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Geometry of entanglement in the Bloch sphere
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Entanglement is an important concept in quantum information, quantum communication, and quantum
computing. We provide a geometrical analysis of entanglement and separability for all the rank 2 quantum
mixed states: complete analysis for the bipartite states and partial analysis for the multipartite states. For each
rank 2 mixed state, we define its unique Bloch sphere, that is spanned by the eigenstates of its density matrix.
We characterize those Bloch spheres into exactly five classes of entanglement and separability, give examples
for each class, and prove that those are the only classes.
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I. INTRODUCTION

Entanglement is a very important property of quantum
states, relevant to the foundations of quantum mechanics (e.g.,
the Einstein-Podolsky-Rosen paradox and Bell’s inequality),
as well as to quantum information, quantum communication
(including quantum teleportation and quantum cryptography),
quantum computers and simulators, and quantum many-body
systems.

The relations among entanglement, partial transpose, and
nonclassical correlations between the subsystems, are well
understood for pure quantum bipartite states. However, for
mixed quantum states there are still many open questions.
Even bipartite mixed states of rank 2 (namely, states that can
be written as ρ = p|ϕ〉〈ϕ| + (1 − p)|ψ〉〈ψ |, where 0 < p <

1, and |ϕ〉,|ψ〉 are bipartite orthonormal states and are the
eigenstates of ρ), that are discussed in this paper, are not well
understood. Studying such states is thus a major challenge in
the field of mixed-state quantum entanglement.

It is known that if a mixed state does not have a positive
partial transpose then it is entangled and presents a nonlocal
behavior [1]. However, one can find separable states presenting
a nonlocal behavior (e.g., Ref. [2]), and one can find entangled
states that have a positive partial transpose [3]; those states
are bound entangled, namely, their entanglement cannot be
distilled [4]. It was later proved that bound entangled states
cannot have rank 3 or less [5,6]. Therefore, checking whether
a specific rank 2 state is entangled is trivial: It is entangled
if and only if it does not have a positive partial transpose.
However, in this paper we discuss the problem of classifying
each rank 2 state by checking which states in its Bloch-sphere
neighborhood (namely, in its corresponding Bloch sphere) are
entangled.

Entanglement distillation (for pure states) [7] and entan-
glement purification (for mixed states) [8] are processes of
distilling Bell states (or other maximally entangled states) from
some copies of an initial state. An efficient protocol is known
for pure states but not for mixed states. This provides another
motivation for studying and finding ways to fully characterize
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the simplest nonpure bipartite states (the rank 2 bipartite mixed
states).

The notion of the Bloch sphere, also known as the Poincaré
sphere, is a very useful geometrical interpretation of a single
qubit. It can be extended to any 2-dimensional (complex)
subspace of a full Hilbert space—for example, the subspace
spanned by the eigenstates of any given rank 2 mixed state.

We define here the Bloch-sphere entanglement of a quantum
rank 2 bipartite state. This (informally) means that we define
the sets of separable states and of entangled states inside
the unique Bloch sphere associated with this quantum state.
We provide some examples, and we prove that the five
classes we present exhaust all the possibilities of Bloch-sphere
entanglement. We briefly discuss going beyond bipartite states,
and we briefly present an interesting exception (from the above
classification) for the case of just two qubits.

We primarily use the Peres-Horodecki criterion [1,3]: If for
a state ρ of the system AB, the operator ρTB is not positive
semidefinite (where ρTB is the partial transpose of ρ with
respect to the the subsystem B), then ρ is entangled.

It was shown in Ref. [3] that for systems of dimensions
2 ⊗ 2, 2 ⊗ 3, or 3 ⊗ 2, ρ is entangled if and only if ρTB is
not positive semidefinite. Yet in higher dimensions there are
entangled states (that are bound entangled states) that have a
positive partial transpose [3,9].

In Sec. II we present a weaker entanglement criterion that
we will use for proving our claims, and in Sec. III we introduce
several important properties of Bloch spheres to be used in our
proofs. In Sec. IV we present a classification of all rank 2
states into five classes, and in Sec. V we prove that no other
classes exist. In Sec. VI we prove that one of the classes does
not exist in a specific case (the two-qubit case). In Sec. VII we
generalize some of our results to multipartite entanglement.
In Sec. VIII we describe previous works in this area, and in
Sec. IX we conclude.

II. A WEAKER ENTANGLEMENT CRITERION

We will use this weaker entanglement criterion to prove our
claims:

Lemma 1. Let ρAB be a state of a bipartite system.
If there are states |ϕA〉, |ϕB〉, |ψA〉, and |ψB〉 such that
〈ϕAϕB |ρAB |ϕAϕB〉 = 0 and 〈ϕAψB |ρAB |ψAϕB〉 �= 0, then
ρAB is entangled.
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Proof. Let ρ = ρAB , |ϕ〉 = |ϕAϕ∗
B〉, and |ψ〉 = |ψAψ∗

B〉,
where |ϕ∗

B〉 and |ψ∗
B〉 are obtained from |ϕB〉 and |ψB〉 by

replacing their amplitudes in the standard (computational)
basis by their complex conjugates.

We first need a property of ρTB . By definition, the partial
transpose of Cijkl = |i〉〈j | ⊗ |k〉〈l| is C

TB

ijkl = |i〉〈j | ⊗ |l〉〈k|,
and the partial transpose ρTB of ρ is obtained by a linear
extension. Therefore, for Cijkl it holds that

〈ϕAϕ∗
B |CTB

ijkl|ψAψ∗
B〉 = 〈ϕA|i〉〈j |ψA〉〈ϕ∗

B |l〉〈k|ψ∗
B〉

= 〈ϕA|i〉〈j |ψA〉〈ψB |k〉〈l|ϕB〉
= 〈ϕAψB |Cijkl|ψAϕB〉,

and by linearity,

〈ϕAϕ∗
B | ρTB |ψAψ∗

B〉 = 〈ϕAψB | ρ |ψAϕB〉.
If the condition of the lemma is satisfied,

then 〈ϕAϕ∗
B |ρTB |ϕAϕ∗

B〉 = 〈ϕAϕB |ρ|ϕAϕB〉 = 0 and
〈ϕAϕ∗

B |ρTB |ψAψ∗
B〉 = 〈ϕAψB |ρ|ψAϕB〉 �= 0. From Lemma 2

it follows that ρTB is not positive semidefinite, and thus that ρ

is entangled. �
We declare this lemma to be a weaker criterion because

it proves entanglement only for a subclass of all the states
satisfying the Peres-Horodecki criterion.

Lemma 2. If a Hermitian operator A is positive semidefinite
and 〈ϕ|A|ϕ〉 = 0, then 〈ϕ|A|ψ〉 = 0 for all |ψ〉.

Proof. Let A = ∑
i λi |i〉〈i| with λi � 0; 〈ϕ|A|ϕ〉 =∑

i λi |〈ϕ|i〉|2 = 0 and thus 〈ϕ|i〉 = 0 if λi �= 0. It follows that
〈ϕ|A|ψ〉 = ∑

i λi〈ϕ|i〉〈i|ψ〉 = 0 for all |ψ〉. �
Lemma 2 was presented by us (M.B. and T.M.) in a

conference [10].

III. PROPERTIES OF SUBSPACES AND BLOCH SPHERES

In the next sections, we also use the following results that
were mentioned in Ref. [11]:

Lemma 3. Let H′ be a subspace of a Hilbert space H. Let
ρ ∈ L(H′) (i.e., ρ can be decomposed as a mixture of pure
states from H′). If ρ = ∑

j qj |ϕj 〉〈ϕj | is a decomposition of
ρ with |ϕj 〉 ∈ H and qj > 0, then |ϕj 〉 ∈ H′ for all j .

Proof. Let {|ψi〉}i∈I ′ be an orthonormal basis of H′, and let
us extend it to an orthonormal basis {|ψi〉}i∈I of H (I ′ ⊆ I ).
Let |ϕj 〉 = ∑

i∈I aji |ψi〉, with aji = 〈ψi |ϕj 〉. Then for all i ∈
I \ I ′,

0 = 〈ψi |ρ|ψi〉 =
∑

j

qj 〈ψi |ϕj 〉〈ϕj |ψi〉 =
∑

j

qj |aji |2,

implying that aji = 0 for all i ∈ I \ I ′, and thus |ϕj 〉 =∑
i∈I ′ aji |ψi〉 ∈ H′. �
Corollary 4. If a rank 2 mixed state ρ is inside a specific

Bloch sphere, then all the pure states in all of its decomposi-
tions lie on the same Bloch sphere.

By using Corollary 4, we get the following:
Corollary 5. If ρ is a rank 2 mixed state, then it lies inside

a unique Bloch sphere (the uniqueness is up to a possible
rotation of the sphere).

Corollary 6. If a rank 2 mixed state ρ is separable, then
there exist at least two different pure separable states on its
unique Bloch sphere.

FIG. 1. Bloch sphere of the example for class 1: All the states on
and inside this Bloch sphere are separable.

IV. CLASSIFICATION OF BLOCH-SPHERE
ENTANGLEMENT

In the rest of this paper we use Lemma 1 (a weaker
entanglement criterion), Lemma 2 (a positive semidefinite
operators condition), Corollary 5 (the unique-Bloch-sphere
corollary), and Corollary 6 (a separable states condition) in
order to provide a classification of Bloch-sphere entanglement.
This is based on the following understanding: If ρ is a bipartite
rank 2 mixed state that is a mixture of pure states in the Hilbert
space HA ⊗ HB , then according to Corollary 5, it lies inside
a unique Bloch sphere (the uniqueness is up to a possible
rotation); and this Bloch sphere corresponds to a 2-dimensional
subspace of HA ⊗ HB .

We present five different classes of 2-dimensional sub-
spaces of a bipartite system that are distinguished by their
Bloch-sphere entanglement. (It is sufficient to consider only
examples for whichHA is 2 dimensional (H2) andHB is either
2 dimensional (H2) or 3 dimensional (H3)).

(1) No entanglement at all
Example in H2 ⊗ H2: Span{|00〉,|01〉} (Fig. 1)
(2) Entanglement everywhere on and inside the sphere

except a line (of separable states) connecting two orthogonal
pure states on the sphere (e.g., the poles)

Example in H2 ⊗ H2: Span{|00〉,|11〉} (Fig. 2)
(3) Entanglement everywhere on and inside the sphere ex-

cept a line (of separable states) connecting two nonorthogonal
pure states on the sphere

Example in H2 ⊗ H2: Span{|00〉,|++〉} (Fig. 3)
(4) Entanglement everywhere on and inside the sphere

except a single separable point on the sphere
Example in H2 ⊗ H2: Span{|00〉,α|01〉 + β|10〉} with

αβ �= 0 (Fig. 4 and Proposition 7)
(5) Entanglement everywhere (“completely entangled

subspace”)
Example in H2 ⊗ H3: Span{[|00〉 + |11〉]/√2,[|02〉 +

|10〉]/√2} (Fig. 5 and Proposition 8)
Does not exist in H2 ⊗ H2 (proof is given in Sec. VI, as

Proposition 10)
Very similar examples can be found in all the bipartite

Hilbert spaces (if the dimensions of both subsystems are at
least 2), except the example of class 5, that does not exist in
H2 ⊗ H2.
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FIG. 2. Bloch sphere of the example for class 2: All the states
along the line connecting |00〉 and |11〉 are separable; all the other
states on and inside this Bloch sphere are entangled. Any two
orthogonal product states can replace |00〉 and |11〉.

The analysis of classes 1–3 (see Figs. 1–3) is very simple
and follows directly from the proof of the general Theorem 9.
Generally speaking, if two pure separable states exist on the
Bloch sphere, then it belongs to one of those classes.

We now analyze the example for class 4 (see Fig. 4), a class
that we found, that was also found independently by authors
of Ref. [12].

Proposition 7. Let |ψ0〉 = |00〉 and |ψ1〉 = α|01〉 + β|10〉
with αβ �= 0, |α|2 + |β|2 = 1. The state ρ = a00|ψ0〉〈ψ0| +
a01|ψ0〉〈ψ1| + a10|ψ1〉〈ψ0| + a11|ψ1〉〈ψ1| is separable if and
only if a01 = a10 = a11 = 0.

Proof. 〈11|ρ|11〉 = 0 and 〈10|ρ|01〉 = a11〈10|ψ1〉〈ψ1|01〉
= a11βα∗; thus, by Lemma 1 (the weaker entanglement
criterion), ρ is entangled if a11 �= 0. If a11 = 0, 〈ψ1|ρ|ψ1〉 = 0
and 〈ψ1|ρ|ψ0〉 = a10; therefore, by Lemma 2, a10 = 0, which
implies that a01 = a∗

10 = 0. �
Finally, for the example of class 5 (see Fig. 5) see

Proposition 8:

FIG. 3. Bloch sphere of the example for class 3: All the states
along the line connecting |00〉 and |++〉 are separable; all the
other states on and inside this Bloch sphere are entangled. Any two
nonorthogonal linearly independent product states can replace |00〉
and |++〉.

FIG. 4. Bloch sphere of the example for class 4: Only the state
|00〉 is separable; all the other states on and inside this Bloch sphere
are entangled.

Proposition 8. Let |ψ0〉 = (|00〉 + |11〉)/√2 and |ψ1〉 =
(|02〉 + |10〉)/√2. The state ρ = a00|ψ0〉〈ψ0| + a01|ψ0〉
〈ψ1| + a10|ψ1〉〈ψ0| + a11|ψ1〉〈ψ1| is always entangled.

Proof. By using Corollary 6 (the separable states condi-
tion), it is sufficient to prove that all the pure states |ψ〉 =
α|ψ0〉 + β|ψ1〉 are entangled.

Let us look at the state

|ψ〉 = α|ψ0〉 + β|ψ1〉
= α√

2
|00〉 + α√

2
|11〉 + β√

2
|02〉 + β√

2
|10〉

�
∑

i,j

εij |i〉|j 〉.

For this state to be separable, there must exist a0,a1 and
b0,b1,b2 such that εij = aibj for all i,j ; hence, the equations
ε01 = a0b1 = 0 and ε12 = a1b2 = 0 must hold. By a simple
calculation it follows that necessarily α = β = 0, which is
impossible. We conclude that there are no separable pure states
on the Bloch sphere, and thus there are no separable mixed
states. �

FIG. 5. Bloch sphere of the example for class 5: All the states on
and inside this Bloch sphere are entangled.
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Our classification suggests natural ways to measure entan-
glement inside the Bloch sphere: For example, entanglement
may be measured by the Euclidean distance to the closest
separable state (e.g., given the Bloch sphere Span{|00〉,|11〉},
the closest separable state to the pure state α|00〉 + β|11〉
is the state |α|2|00〉〈00| + |β|2|11〉〈11|). We note that this
entanglement measure, unlike the measures analyzed by
Refs. [11,13], vanishes only for separable states. Analyzing
the properties of such measures is beyond the scope of this
paper.

V. A PROOF THAT THERE ARE EXACTLY FIVE CLASSES
OF BLOCH-SPHERE ENTANGLEMENT

Our main goal is to provide a full analysis of the general
bipartite case. We prove that the classes we found are the only
classes that exist in the bipartite case, for all the rank 2 bipartite
states (namely, for all the corresponding 2-dimensional Hilbert
spaces):

Theorem 9. Let H be a 2-dimensional subspace of HA ⊗
HB , whereHA andHB are two Hilbert spaces. ThenH belongs
to one of the following classes:

Class 1: The Bloch ball of H is completely separable.
Class 2+3: The Bloch ball of H has one line of separable

states, and all the other states are entangled.
Class 4: The Bloch ball of H has one separable point (pure

state), and all the other states are entangled.
Class 5: The Bloch ball of H is completely entangled.
(We note that class 2 and class 3 are discussed together,

because in both of them the Bloch ball has just one line of
separable states.)

Proof. First, assume that there is no separable mixed state
inside the Bloch ball. This means that there is at most one pure
separable state on the Bloch sphere (because if two pure states
are separable, then the line connecting them inside the Bloch
ball is separable, too). This matches classes 4 and 5.

Now assume that there is a separable mixed state ρ inside
the Bloch ball. According to Corollary 6 (the separable states
condition), this means that there are at least two different
pure separable states on the Bloch sphere. We denote them
by |ψ〉 = |ψA〉 ⊗ |ψB〉 and |ϕ〉 = |ϕA〉 ⊗ |ϕB〉.

We note that |ψ〉 � |ϕ〉 (defining the symbol ∼= to be
equality as normalized states, possibly with different global
phases; thus, the symbol � means that the two normalized
states are really different, as opposed to states that are equal
up to a global phase), which means that |ψ〉 and |ϕ〉 are
linearly independent. Therefore, the Bloch sphere represents
the 2-dimensional subspace Span{|ψ〉,|ϕ〉}, which means that
all the mixed states inside the Bloch ball are of the form

ρ = a00|ψ〉〈ψ | + a01|ψ〉〈ϕ| + a10|ϕ〉〈ψ | + a11|ϕ〉〈ϕ|. (1)

If |ψA〉 ∼= |ϕA〉 or |ψB〉 ∼= |ϕB〉, then obviously all the states
on and inside the Bloch sphere are separable, which matches
class 1.

If |ψA〉 � |ϕA〉 and |ψB〉 � |ϕB〉, then we prove that only
the line connecting |ψ〉 and |ϕ〉 inside the Bloch ball is
separable and that all the other pure and mixed states in the
Bloch ball are entangled. This will match classes 2 and 3, and
will conclude our proof.

We look at all the mixed states of the form (1). If a01 =
a10 = 0, then we obviously get a separable state:

ρ = a00|ψA〉〈ψA| ⊗ |ψB〉〈ψB | + a11|ϕA〉〈ϕA| ⊗ |ϕB〉〈ϕB |.

If a10 �= 0, then let |ϕA〉 ∈ HA satisfy 〈ϕA|ϕA〉 = 0 and
〈ψA|ϕA〉 �= 0 (|ϕA〉 always exists, because |ψA〉 � |ϕA〉).
Similarly, let |ψA〉 ∈ HA and |ϕB〉,|ψB〉 ∈ HB satisfy similar
properties (because |ψB〉 � |ϕB〉). Then

〈ψA ϕB |ρ|ψA ϕB〉 = 0

and

〈ψA ψB |ρ|ϕA ϕB〉 = a10〈ψA ψB |ϕAϕB〉〈ψAψB |ϕA ϕB〉
= a10〈ψA|ϕA〉〈ψB |ϕB〉〈ψA|ϕA〉〈ψB |ϕB〉
�= 0.

Therefore, by Lemma 1 (the weaker entanglement cri-
terion), if a10 �= 0 (or a01 �= 0; this is equivalent, because
a01 = a∗

10), then ρ is entangled.
We conclude that only the line between |ψ〉 and |ϕ〉 (i.e., the

line of states satisfying a01 = a10 = 0) is separable and that
the other states (i.e., the states satisfying a10 �= 0 or a01 �= 0)
are entangled, which matches classes 2 and 3. This concludes
our proof. �

VI. A PROOF THAT CLASS 5 DOES NOT EXIST IN THE
TWO-QUBIT CASE

We have seen that for almost all the bipartite Hilbert spaces,
five classes appear. We now show that for the Hilbert space
H2 ⊗ H2, only four classes exist (classes 1–4):

Proposition 10. No 2-dimensional subspace of H2 ⊗ H2 is
completely entangled.

Proof. This proof follows the methods of Ref. [11]. We
remember that for a two-qubit state |ψ〉 = ∑

i,j aij |i〉|j 〉, the
concurrence C is defined as follows [14,15]:

C(ψ) = 2|a00a11 − a01a10|. (2)

In particular, C(ψ) = 0 if and only if |ψ〉 is separable. (This
is not necessarily true for other entanglement measures.)

Let H � Span{|ψ0〉,|ψ1〉} be a 2-dimensional subspace
of H2 ⊗ H2. We may assume that C(ψ1) �= 0 (otherwise,
|ψ1〉 is separable, hence H cannot be completely entangled).
Therefore, the set of separable (non-normalized) pure states
in H is the set of states |ψ0〉 + z|ψ1〉 satisfying the following
equation:

C(|ψ0〉 + z|ψ1〉) = 0.

This is a quadratic equation in the complex variable z

(because we may ignore the absolute value). The absolute
value of the coefficient of z2 is C(ψ1) �= 0. Therefore, there are
two solutions ξ1,ξ2 (possibly equal) to this equation, and thus
the non-normalized state |ψ0〉 + ξ1|ψ1〉 (whose normalization
is in H) must be separable. Therefore, there is a separable state
in H, and H cannot be completely entangled. �

032308-4



GEOMETRY OF ENTANGLEMENT IN THE BLOCH SPHERE PHYSICAL REVIEW A 95, 032308 (2017)

VII. EXAMPLES AND ANALYSIS OF MULTIPARTITE
ENTANGLEMENT

For multipartite states, there are several different definitions
of separability and entanglement: An m-partite mixed state
is “fully separable” if it is a mixture of pure states that are
products of m pure states; and it is “separable with respect to
a bipartite partition P” (with P partitioning the m subsystems
into two disjoint sets) if the bipartite state corresponding
to the partition P is separable [16]. For example, the state
|0〉A|
+〉BC ∈ HA ⊗ HB ⊗ HC is separable with respect to
the partition {{1},{2,3}}, but is entangled with respect to both
partitions {{1,2},{3}} and {{1,3},{2}}. Note that even if a state
is separable with respect to all the bipartite partitions, it may
still be entangled (i.e., not fully separable) [9].

To illustrate the many existing possibilities for Bloch
spheres in the multipartite case, we look at two examples:

(1) Span{|000〉,|111〉}: the line connecting between the
north pole (|000〉) and the south pole (|111〉) is fully separable;
all the other points are entangled with respect to any bipartite
partition.

(2) Span{|000〉,|011〉}: the line connecting between the
north pole (|000〉) and the south pole (|011〉) is fully separable;
all the other points are separable with respect to the bipartite
partition {{1},{2,3}}, but are entangled with respect to the
partitions {{1,2},{3}} and {{1,3},{2}}.

The proofs of separability above are direct from the
definitions; and the proofs of entanglement are implied by
our analysis in the proof of Theorem 9.

Moreover, our Theorem 9 is true also for the set of fully
separable states in the multipartite case:

Theorem 11. Let H be a 2-dimensional subspace of HA1 ⊗
· · · ⊗ HAm

, where HA1 , . . . ,HAm
are Hilbert spaces. Then H

belongs to one of the following classes:
Class 1: All the states inside the Bloch ball of H are fully

separable.
Class 2+3: The Bloch ball of H has one line of fully

separable states, and all the other states are not fully separable.
Class 4: The Bloch ball of H has one fully separable point

(pure state), and all the other states are not fully separable.
Class 5: All the states inside the Bloch ball of H are not

fully separable.
Proof. First, assume that there is no fully separable mixed

state inside the Bloch ball. This means that there is at most one
pure fully separable state on the Bloch sphere (because if two
pure states are fully separable, then the line connecting them
inside the Bloch ball is fully separable, too). This matches
classes 4 and 5.

Now assume that there is a fully separable mixed state ρ

inside the Bloch ball. According to Corollary 6 (the separable
states condition), this means that there are at least two different
fully separable pure states on the Bloch sphere. We denote
them by |ψ〉 = |ψA1〉 ⊗ · · · ⊗ |ψAm

〉 and |ϕ〉 = |ϕA1〉 ⊗ · · · ⊗
|ϕAm

〉.
We note that |ψ〉 � |ϕ〉 (defining the symbol ∼= as we did

in the proof of Theorem 9 above; thus, the symbol � means
that the two normalized states are really different, as opposed
to states that are equal up to a global phase), which means that
|ψ〉 and |ϕ〉 are linearly independent. Therefore, the Bloch
sphere represents the 2-dimensional subspace Span{|ψ〉,|ϕ〉},

which means that all the mixed states inside the Bloch ball are
of the form

ρ = a00|ψ〉〈ψ | + a01|ψ〉〈ϕ| + a10|ϕ〉〈ψ | + a11|ϕ〉〈ϕ|. (3)

If |ψAi
〉 ∼= |ϕAi

〉 for all i except one value of i, then
obviously all the states on and inside the Bloch sphere are
fully separable, which matches class 1.

If |ψAi1
〉 � |ϕAi1

〉 and |ψAi2
〉 � |ϕAi2

〉 for i1 < i2, then
we prove that for the bipartite partition {I1,I2} with I1 =
{1, . . . ,i1} and I2 = {i1 + 1, . . . ,m} (satisfying I1 ∪ I2 =
{1, . . . ,m}, I1 ∩ I2 = ∅, i1 ∈ I1, and i2 ∈ I2), it holds that only
the line connecting |ψ〉 and |ϕ〉 inside the Bloch ball is fully
separable, and that all the other pure and mixed states in the
Bloch ball are entangled with respect to the partition {I1,I2}.
This will match classes 2 and 3, and will conclude our proof.

To prove that the line is fully separable, we notice that any
convex combination of fully separable states is fully separable,
and therefore the line connecting |ψ〉 and |ϕ〉 inside the Bloch
ball is fully separable.

To prove that all the other states are entangled with respect
to the partition {I1,I2}, we denote |ψI1〉 = |ψA1〉 ⊗ · · · ⊗
|ψAi1

〉 and |ψI2〉 = |ψAi1+1〉 ⊗ · · · ⊗ |ψAm
〉; and similarly, we

define |ϕI1〉 and |ϕI2〉. Then, because i1 < i2, and because
|ψAi1

〉 � |ϕAi1
〉 and |ψAi2

〉 � |ϕAi2
〉, it must hold that |ψI1〉 �

|ϕI1〉 and |ψI2〉 � |ϕI2〉. It also holds that |ψ〉 = |ψI1〉 ⊗ |ψI2〉
and |ϕ〉 = |ϕI1〉 ⊗ |ϕI2〉; therefore, according to the proof of
the original Theorem 9, it holds that all the states outside of the
line connecting |ψ〉 and |ϕ〉 in the Bloch ball (i.e., all the states
satisfying a01 �= 0 or a10 �= 0) are entangled with respect to
the partition {I1,I2}. Together with the proof that all the states
on that line (i.e., all the states satisfying a01 = a10 = 0) are
fully separable, this matches classes 2 and 3, and concludes
our proof. �

Extensions of Theorem 9 to other cases of multipartite
entanglement are beyond the scope of this paper.

VIII. PREVIOUS WORKS

The existence of completely entangled subspaces has been
discussed in many papers before. In particular, this notion was
used in Ref. [9] to prove the existence of a huge class of bound
entangled states.

Analysis of entangled states in a Hilbert subspace, using
specific entanglement measures (e.g., the concurrence and the
3-tangle) and Bloch spheres, was done by Refs. [13] and [11].
However, the entanglement measures they choose usually
vanish not only for all the separable states, but also for some
of the entangled states [11]. Much more recently, Refs. [12]
and [17] investigated interesting classes in the same research
direction. In contrast, our paper analyzes the separability and
the entanglement in the Bloch sphere for any rank 2 bipartite
state; and, instead of using a specific entanglement measure
that cannot show the entanglement of some of the entangled
states, we fully characterize the set of separable states on and
inside the state’s Bloch sphere.

IX. CONCLUSION

We have found a complete classification of the possible
sets of separable states in all the 2-dimensional subspaces of
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bipartite Hilbert spaces. Our result is general and is not limited
to specific entanglement measures or to specific bipartite
spaces but applies to all the bipartite Hilbert spaces and
extends to the sets of fully separable states in multipartite
spaces. Moreover, the result makes it possible to define natural
measures that vanish exactly on the separable states.

It may be possible to extend our results into higher-rank
mixed states: For example, it is possible to look at portions
of the higher-rank states (e.g., a nondegenerate rank 3 state
defines three Bloch spheres, each corresponding to two out of
the three eigenstates); and it is possible to analyze higher-rank
states that are ε close (ε � 1) to rank 2 states.

Our analysis identifies the set of Bloch-sphere neighbor
states of any rank 2 state (namely, the set of states in its Bloch

sphere). Such Bloch-sphere neighbor states may be useful
for various protocols: For example, entanglement purification
or error correction protocols may first turn the state into a
Bloch-sphere neighbor state of desired properties (e.g., more
entangled) and then operate on that Bloch-sphere neighbor
state. Those possibilities may be explored by future research.
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