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Preface: Bloch-sphere Entanglement

e We look at the set of separable states
In a Bloch sphere.

e For example:




e Introduction
e Generalized Bloch sphere
e Our work: general result for bipartite

Hilbert spaces
e Extension to multipartite Hilbert spaces
e Previous works
e Conclusion




Introduction

Entanglement is important for:

e The foundations of quantum mechanics:
The EPR paradox
Bell's inequality
e Quantum communication:
Quantum teleportation
Quantum cryptography

e Quantum computers




Introduction: Bipartite Entanglement

e Let p be a mixed bipartite state.

That Is, a mixture of states in the bipartite
Hilbert space H, ® Hg.

e p Is said to be separable If:
P =2 P lWa<Wila ® [Ws<yils
e Otherwise, p Is said to be entangled.




Bloch Sphere for One Qubit

e Bloch sphere (or Poincaré sphere) is a
geometrical representation of
H, = Span{|0>, |1>} and of its mixtures.

The point (X, Y, z)
corresponds to the state:
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Properties of the Bloch Sphere

e A diameter connects orthogonal states.

e A convex combination of two states lies
on the line connecting between them.




Bloch Sphere for a Rank-2 State

e We look at a rank-2 state p.
e Writing its spectral decomposition, we get:
P =0 |We><yg| +(1-0) - |w><y;|
{lwo>, |w,>}is an orthonormal set.
e This state lies inside a unigue Bloch sphere:
The sphere represents Span{|y,>, |@,>}.
Inside the sphere are the mixtures of those states.
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Bloch Sphere for a Rank-2 State

Three equivalent notions:

P=0|W><Yy| + (1-09) |, ><y,]
Rank-2 mixed state
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Two-dimensional Generalized
Hilbert space Bloch sphere




Our Work: General Result

e Our results apply to any bipartite system,
represented by a Hilbert space H, ® Hg:

e For each rank-2 state, there are five
possibilities for the Bloch sphere:

1. No entanglement
. One separable line — diameter
. One separable line — non-diameter
. One separable point
. Completely entangled subspace
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Peres-Horodecki Criterion

e Let A and B be two subsystems.
e Let p be a state in the system H, ® Hg.
e Let p'8 be the partial transpose of p with

respect to the subsystem B.
o |f
p'8 is not a positive operator,
e then
p must be entangled.
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Peres-Horodecki Criterion

eInH,®H,, H, ® H; and H; ® H.:
If p is entangled, then p'8is not a positive
operator.
e However, In other Hilbert spaces, there
exist entangled states with a positive
partial transpose.

Those states are bound entangled:
their entanglement cannot be distilled.
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A Weaker Entanglement Criterion

Lemma:
e Let p be a mixture of states in H, ® Hg.

e If there are |$,>, |w,> € H, and
0>, |Wws> € Hyg such that:

<Ppds | P | Pads>=0, and
<O Wg | P | Wads>#0,
e then

p IS entangled.
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A Weaker Entanglement Criterion

Proof:

e We define |pg*> and |pg*>, as follows:
If, In the computational basis:

0> =2, & |Jg>

lWe>=2; b lig>
e Then:

[bg™> =2 & [Ig>

lWg*> =2, b* |jg>
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A Weaker Entanglement Criterion

Proof — continued:

e We calculate:
<¢p ¢ | Cule | Wp Wp*>
= <OAlI><J|Wp> - <Pg*|I><k|yg*>
= <OAlI><|Wp> - <yplk><l|dpg>
= <@p W | Cijy | Wa 05>
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A Weaker Entanglement Criterion

Proof — continued:
e By linearity:
<Pp " | P'B| dp s> =<bp b | P | GpPs>=0

<Op 9" | P8 | Wa Wp™> =< W | P | Wadp>#0
e Therefore, p's cannot be positive semidefinite!

e By the Peres-Horodecki criterion, p must be
entangled.
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Another Property of Bloch Spheres

e Let p be a rank-2 mixed state.

e All the pure states appearing in any
decomposition of p lie on the same
Bloch sphere.

e This proves that each rank-2 mixed state
IS included in exactly one Bloch sphere.
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Another Property of Bloch Spheres

In particular:
e Let p be a rank-2 mixed state.

o If
o Is separable,

e then

there exist two different separable (pure)
states on the Bloch sphere.
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Bloch Spheres — Classification

We analyze the set of separable states.
There are five classes of Bloch spheres:

e Class 1 — no entanglement:

19



Bloch Spheres — Classification

e Class 2 —one line of separability,
connecting two orthogonal states:

00)
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Bloch Spheres — Classification

e Class 3 —one line of separability,
connecting two non-orthogonal states:

00)

++)

101) +[10) +[11)]//3
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Bloch Spheres — Classification

e Class 4 — one separable point,

that must be a pure state:
00)
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Bloch Spheres — Classification

e Class 5 — completely entangled

subspace:
100) +[11)]/v/2

(does not exist
for two qubits)

[102) +[10)] /v/2
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Our Central Theorem

Theorem:

e Any rank-2 bipartite state p, (a mixture of
states In H, ® Hg) belongs to one of

those five classes.
e Namely, no other classes exist.
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Our Central Theorem

Proof:

e Case 1: no separable mixed state exists
inside the Bloch sphere of p,.

e Therefore, there cannot be two (or more)
separable pure states!

Otherwise, the line cor|m}ecting them Is separable.

e Two possibilities remain N\
One separable pure state (C|Iass 4)

No separable state§ atfll (Qlass 5)

y)
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Our Central Theorem

Proof — continued:

e Case 2: a separable mixed state p,
exists Inside the Bloch sphere of p,.

e Therefore, there are two different
separable pure states:

> = > > T T
Y |L|JA |L|JB / )

0> = [¢p> |dp> /p/'/ |
K\_H K,/ ,,/’j;

Iy

26



Our Central Theorem

Proof — continued:

e All the mixed states in the Bloch sphere:
P = ago [W><Y[ + ag; [W><¢| + arq [Pp><y]| + ay; [p><¢|

e Two possibilities exist:
|Wa> = |§p> OF |Wp> = |$pp>
(equality up to global phase):
corresponds to Class 1

lWa> 2 |$,>and |wg> 2 |¢p>:
corresponds to Class 2 or Class 3 (proved below)
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Our Central Theorem

Proof — continued:
o Assume that [y,> % [|¢,> and |yg> % |¢g>.
e Define:
|9,> such that <¢,|¢p,> = 0 and <y,|p,"> # 0
|95"™> such that <¢g|pg™> = 0 and <yg|pg™> # 0
Similarly, |¢,"> and |yg"™>
e Let p be a state inside the sphere:
P = ago (W><Y| + ag; [W><¢| + ayq [§><y]| + ay; [p><9|
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Our Central Theorem

Proof — continued:
e Let p be a state inside the sphere:
P = Ay |W><y| + ay; |[W><9| + a, [P><y| + a;4 [9><P|

e If a5, = a,;5 = 0 (the line connecting |y> and [¢>),
o Is separable.
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Our Central Theorem

Proof — continued:
e Let p be a state inside the sphere:

P = Qg |W><yY| + gy [W><¢| + ajq [O><y| + ay; [$><G|
e If a,, # O (all the states outside that line), then:

<Pp' P [P |Ws Pp™>=0

<Wa' W' P Pa P> = a5 <w, We'lo><w[d, dg>#0

By our Lemma, p is entangled. m

Reminder —the Lemma:

e If there are ¢,a) , |Wa> € and |¢Ei> |lWg> € H such that:

<OPpds | P | PaPs>=0, an <¢AL|JB Pl LIJAq)B
e then pis entangled.
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Multipartite Entanglement

e Let p be a mixed multipartite state.

That Is, a mixture of states in the multipartite
Hilbert space Hy, ® Hy ® ... ® Hy .

e p Is said to be fully separable If:
P =2 P WA, <Wila, ® W, <Wi[n, ® ...
® W=, <Wila,

e Otherwise, p Is said to be entangled.
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Multipartite Entanglement

e Examples:

The tripartite states |000>, |011>, and |111> are
fully separable.

The tripartite states [|000> + |111>] / V2 are
entangled with respect to all the bipartite partitions:
{1, 2}, {3}}, {{1, 3}, {2}}, and {{1}, {2, 3}}.

The tripartite states |0®,> = [|000> + |011>] / 2
are entangled with respect to the bipartite
partitions {{1, 2}, {3}} and {{1, 3}, {2}}, and
separable with respect to the partition {{1}, {2, 3}}.
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Multipartite Entanglement

e Our Theorem discusses bipartite
entanglement.

e However, It can be easily extended to
multipartite entanglement:

The set of fully separable states belongs to
one of the five classes.
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Multipartite: Example 1

1000,

000) — |111) /
V2 \

'\omwm)
V2

_/

111)
e The line connecting |000> and [111> is

fully separable.

e All the other states are entangled with
respect to any bipartite partition.
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Multipartite: Example 2

011)
e The line connecting |000> and |011> is fully
separable.
e All the other states are:

entangled with respect to the partitions {{1, 2}, {3}}
and {{1, 3}, {2}}; and

separable with respect to the partition {{1}, {2, 3}}.
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Previous Works

e Osterloh, Siewert and Uhlmann analyzed
entanglement of rank-2 mixed states:

Based on entanglement measures that are
polynomials in the coefficients of the state.

Example: the concurrence (for two qubits):
C(y) = 2 [agg @11 — Aoy 349l
e Regula and Adesso further analyzed the
entanglement measures In Bloch sphere.

e Our work applies to any bipartite space.
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Conclusion

e All the Bloch spheres in all the bipartite
Hilbert spaces belong to five classes:
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Thank you!




