Geometry of Entanglement in the Bloch Sphere

Preface: Bloch-sphere Entanglement

- We look at the set of separable states in a Bloch sphere.
- For example:

Introduction

- Generalized Bloch sphere
- Our work: general result for bipartite Hilbert spaces
- Extension to multipartite Hilbert spaces
- Previous works
- Conclusion

Introduction

Entanglement is important for:

- The <u>foundations</u> of quantum mechanics:
 - The EPR paradox
 - Bell's inequality
- Quantum <u>communication</u>:
 - Quantum teleportation
 - Quantum cryptography
 - Quantum <u>computers</u>

Introduction: Bipartite Entanglement

- Let ρ be a mixed bipartite state.
 - That is, a mixture of states in the bipartite Hilbert space $H_A \otimes H_B$.
- ρ is said to be separable if:
 - $\rho = \sum_{j} p_{j} |\psi_{j}\rangle_{A} \langle \psi_{j}|_{A} \otimes |\psi_{j}\rangle_{B} \langle \psi_{j}|_{B}$
- Otherwise, ρ is said to be entangled.

Bloch Sphere for One Qubit

Bloch sphere (or Poincaré sphere) is a geometrical representation of
 H₂ = Span{|0>, |1>} and of its mixtures.

The point (x, y, z) corresponds to the state: $\frac{1}{2} \begin{bmatrix} 1+z & x-iy \\ x+iy & 1-z \end{bmatrix}$

Properties of the Bloch Sphere

- A diameter connects orthogonal states.
- A <u>convex combination</u> of two states lies on the line connecting between them.

Bloch Sphere for a Rank-2 State

- We look at a <u>rank-2</u> state ρ.
- Writing its spectral decomposition, we get:
 - $\rho = q \cdot |\psi_0 \rangle \langle \psi_0| + (1-q) \cdot |\psi_1 \rangle \langle \psi_1|$
 - { $|\psi_0>$, $|\psi_1>$ } is an orthonormal set.
- This state lies inside a **unique** Bloch sphere:
 - The <u>sphere</u> represents **Span{|\psi_0>, |\psi_1>}**.
 - Inside the sphere are the mixtures of those states.

Bloch Sphere for a Rank-2 State

Our Work: General Result

- Our results apply to **any bipartite** system, represented by a Hilbert space $H_A \otimes H_B$:
- For each rank-2 state, there are five possibilities for the Bloch sphere:
 - 1. No entanglement
 - 2. One separable line diameter
 - 3. One separable line non-diameter
 - 4. One separable point
 - 5. Completely entangled subspace

Peres-Horodecki Criterion

- Let A and B be two subsystems.
- Let ρ be a state in the system $H_A \otimes H_B$.
- Let ρ^{T_B} be the <u>partial transpose</u> of ρ with respect to the subsystem B.
 - ρ^{T_B} is not a positive operator,
- then

If

• ρ must be entangled.

Peres-Horodecki Criterion

- In $H_2 \otimes H_2$, $H_2 \otimes H_3$ and $H_3 \otimes H_2$:
 - If ρ is entangled, then ρ^{TB} is not a positive operator.
- <u>However</u>, in other Hilbert spaces, there exist <u>entangled states</u> with a positive partial transpose.
 - Those states are bound entangled: their entanglement <u>cannot be distilled</u>.

Lemma:

- Let ρ be a mixture of states in $H_A \otimes H_B$.
- If there are $|\phi_A>$, $|\psi_A> \in H_A$ and $|\phi_B>$, $|\psi_B> \in H_B$ such that:
 - $\langle \phi_A \phi_B | \rho | \phi_A \phi_B \rangle = 0$, and
 - $\langle \phi_A \psi_B \mid \rho \mid \psi_A \phi_B \rangle \neq 0$,

then

ρ is entangled.

Proof:

• We define $|\phi_B^*\rangle$ and $|\psi_B^*\rangle$, as follows: if, in the computational basis:

•
$$|\phi_B\rangle = \sum_j a_j |j_B\rangle$$

$$\nabla |\Psi_B|^2 = \sum_j \nabla_j |J_B|^2$$

• Then:

•
$$|\phi_B^*\rangle = \sum_j a_j^* |j_B\rangle$$

• $|\psi_B^*\rangle = \sum_i b_i^* |j_B\rangle$

Proof – continued:

- Let: $C_{ijkl} = |i > < j| \otimes |k > < l|$
- Then: $C_{ijkl}^{T_B} = |i > < j| \otimes |l > < k|$
- We calculate:
 - $\langle \phi_A \phi_B^* | C_{ijkl}^{T_B} | \psi_A \psi_B^* \rangle$ • $= \langle \phi_A | i \rangle \langle j | \psi_A \rangle \cdot \langle \phi_B^* | l \rangle \langle k | \psi_B^* \rangle$
 - = $\langle \phi_A | i \rangle \langle j | \psi_A \rangle \cdot \langle \psi_B | k \rangle \langle l | \phi_B \rangle$
 - = $\langle \phi_A | \psi_B | C_{ijkl} | \psi_A | \phi_B \rangle$

Proof – continued:

- By linearity:
 - $\langle \phi_A \phi_B^* | \rho^{T_B} | \phi_A \phi_B^* \rangle = \langle \phi_A \phi_B | \rho | \phi_A \phi_B \rangle = 0$
 - $\langle \phi_A \phi_B^* \mid \rho^{T_B} \mid \psi_A \psi_B^* \rangle = \langle \phi_A \psi_B \mid \rho \mid \psi_A \phi_B \rangle \neq 0$
- Therefore, ρ^{T_B} cannot be positive semidefinite!
- By the Peres-Horodecki criterion, ρ must be entangled.

Another Property of Bloch Spheres

- Let ρ be a rank-2 mixed state.
- All the pure states appearing in <u>any</u> decomposition of ρ lie on the same Bloch sphere.
- This proves that each rank-2 mixed state is included in exactly one Bloch sphere.

Another Property of Bloch Spheres

In particular:

Let ρ be a rank-2 mixed state.

If
 ρ is separable,

• then

 there exist two <u>different</u> separable (<u>pure</u>) states on the Bloch sphere.

We analyze the **set of separable states**. There are <u>five classes</u> of Bloch spheres:

• Class 1 – no entanglement:

<u>Class 3</u> – one line of separability, connecting two non-orthogonal states:

 $\left[\left| 02 \right\rangle + \left| 10 \right\rangle \right] / \sqrt{2}$

(**does not exist** for two qubits)

Theorem:

- Any rank-2 bipartite state ρ₀ (a mixture of states in H_A ⊗ H_B) belongs to one of those five classes.
- Namely, <u>no other classes exist</u>.

Proof:

- <u>Case 1:</u> no separable **mixed** state exists inside the Bloch sphere of ρ_0 .
- Therefore, there cannot be two (or more) separable pure states!
 - Otherwise, the line connecting them is separable.

 ψ_1

- Two possibilities remain:
 - One separable pure state (Class 4)
 - No separable states at all (Class 5)

Proof – continued:

- <u>Case 2</u>: a separable **mixed** state ρ₁
 exists inside the Bloch sphere of ρ₀.
- Therefore, there are two <u>different</u> separable **pure** states:

Proof – continued:

- All the mixed states in the Bloch sphere:
 - $\rho = a_{00} |\psi \rangle \langle \psi | + a_{01} |\psi \rangle \langle \phi | + a_{10} |\phi \rangle \langle \psi | + a_{11} |\phi \rangle \langle \phi |$

• Two possibilities exist:

- |ψ_A> ≅ |φ_A> <u>or</u> |ψ_B> ≅ |φ_B> (equality up to global phase): corresponds to Class 1
- |ψ_A> ≇ |φ_A> and |ψ_B> ≇ |φ_B>:
 corresponds to Class 2 or Class 3 (proved below)

Proof – continued:

• Assume that $|\psi_A > \not\cong |\phi_A > \underline{and} |\psi_B > \not\cong |\phi_B >$.

• Define:

- $|\phi_A'\rangle$ such that $\langle \phi_A | \phi_A' \rangle = 0$ and $\langle \psi_A | \phi_A' \rangle \neq 0$
- $|\phi_B'\rangle$ such that $\langle \phi_B | \phi_B' \rangle = 0$ and $\langle \psi_B | \phi_B' \rangle \neq 0$
- Similarly, $|\psi_A'>$ and $|\psi_B'>$
- Let ρ be a state inside the sphere:
 - $\rho = a_{00} |\psi \rangle \langle \psi | + a_{01} |\psi \rangle \langle \phi | + a_{10} |\phi \rangle \langle \psi | + a_{11} |\phi \rangle \langle \phi |$

Proof – continued:

- Let ρ be a state inside the sphere:
 - $\rho = a_{00} |\psi \rangle \langle \psi | + a_{01} |\psi \rangle \langle \phi | + a_{10} |\phi \rangle \langle \psi | + a_{11} |\phi \rangle \langle \phi |$
- If a₀₁ = a₁₀ = 0 (the line connecting |ψ> and |φ>),
 ρ is separable.

Proof – continued:

- Let ρ be a state inside the sphere:
 - $\rho = a_{00} |\psi \rangle \langle \psi | + a_{01} |\psi \rangle \langle \phi | + a_{10} |\phi \rangle \langle \psi | + a_{11} |\phi \rangle \langle \phi |$
- If $a_{10} \neq 0$ (all the states outside that line), then:
 - <ψ_A' φ_B' | ρ | ψ_A' φ_B'> = 0
 - $\langle \psi_{A}' \psi_{B}' | \rho | \phi_{A}' \phi_{B}' \rangle = a_{10} \langle \psi_{A}' \psi_{B}' | \phi \rangle \langle \psi_{A}' \phi_{B}' \rangle \neq 0$
 - By our Lemma, ρ is **entangled**.

Reminder – the Lemma:

- If there are $|\phi_A>$, $|\psi_A> \in H_A$ and $|\phi_B>$, $|\psi_B> \in H_B$ such that: $\langle \phi_A \phi_B \mid \rho \mid \phi_A \phi_B> = 0$, and $\langle \phi_A \psi_B \mid \rho \mid \psi_A \phi_B> \neq 0$,
- **then** ρ is entangled.

Multipartite Entanglement

- Let ρ be a mixed multipartite state.
 - That is, a mixture of states in the multipartite Hilbert space $H_{A_1} \otimes H_{A_2} \otimes ... \otimes H_{A_m}$.
- ρ is said to be fully separable if:
 - $\rho = \sum_{j} p_{j} |\psi_{j}\rangle_{A_{1}} \langle \psi_{j}|_{A_{1}} \otimes |\psi_{j}\rangle_{A_{2}} \langle \psi_{j}|_{A_{2}} \otimes \dots$ $\otimes |\psi_{j}\rangle_{A_{m}} \langle \psi_{j}|_{A_{m}}$
- Otherwise, ρ is said to be entangled.

Multipartite Entanglement

• Examples:

- The tripartite states |000>, |011>, and |111> are fully separable.
- The tripartite states [|000> ± |111>] / √2 are entangled with respect to all the <u>bipartite partitions</u>: {{1, 2}, {3}}, {{1, 3}, {2}}, and {{1}, {2, 3}}.
- The tripartite states |0Φ_±> = [|000> ± |011>] / √2 are entangled with respect to the <u>bipartite</u> partitions {{1, 2}, {3}} and {{1, 3}, {2}}, and separable with respect to the partition {{1}, {2, 3}}.

Multipartite Entanglement

- Our Theorem discusses bipartite entanglement.
- However, it can be easily extended to multipartite entanglement:
 - The set of <u>fully separable</u> states belongs to one of the five classes.

Multipartite: Example 1

- The line connecting |000> and |111> is fully separable.
- All the other states are entangled with respect to <u>any bipartite partition</u>.

Multipartite: Example 2

- The line connecting |000> and |011> is fully separable.
- All the other states are:
 - entangled with respect to the <u>partitions</u> {{1, 2}, {3}} and {{1, 3}, {2}}; and
 - separable with respect to the <u>partition</u> {{1}, {2, 3}}.

Previous Works

- Osterloh, Siewert and Uhlmann analyzed entanglement of rank-2 mixed states:
 - Based on <u>entanglement measures</u> that are polynomials in the coefficients of the state.
 - Example: the concurrence (for two qubits):
 C(ψ) = 2 |a₀₀ a₁₁ a₀₁ a₁₀|
- Regula and Adesso further analyzed the entanglement measures in Bloch sphere.
- Our work applies to any bipartite space.

Previous Works – References

Osterloh, Siewert and Uhlmann:

- Lohmayer, R., Osterloh, A., Siewert, J., & Uhlmann, A. "Entangled three-qubit states without concurrence and three-tangle." *Physical review letters*, 97(26), 260502 (2006).
- Osterloh, A., Siewert, J., & Uhlmann, A. "Tangles of superpositions and the convex-roof extension." *Physical Review A*, 77(3), 032310 (2008).

Regula and Adesso:

 Regula, B., & Adesso, G. "Entanglement quantification made easy: Polynomial measures invariant under convex decomposition." *Physical review letters*, *116*(7), 070504 (2016).

• All the Bloch spheres in all the bipartite Hilbert spaces belong to five classes:

Thank you!

