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Quantum Cryptography uses the counter-intuitive properties of Quantum Mechanics for 
performing cryptographic tasks in a secure and reliable way. The Quantum Key Distribution 
(QKD) protocol BB84 has been proven secure against several important types of attacks: 
collective attacks and joint attacks. Here we analyze the security of a modified BB84 
protocol, for which information is sent only in the z basis while testing is done in both 
the z and the x bases, against collective attacks. The proof follows the framework of a 
previous paper [1], but it avoids a classical information-theoretical analysis and proves a 
fully composable security. We show that this modified BB84 protocol is as secure against 
collective attacks as the original BB84 protocol, and that it requires more bits for testing.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Cryptography is the science of protecting the security and correctness of data against adversaries. One of the most 
important cryptographic problems is the problem of encryption – namely, of transmitting a secret message from a sender to 
a receiver. Two main encryption methods are used today:

1. In symmetric-key cryptography, the same secret key is used for both the sender and the receiver: the sender uses the 
secret key for encrypting his or her message, and the receiver uses the same secret key for decrypting the message. 
Examples of symmetric-key ciphers include the Advanced Encryption Standard (AES) [3], the older Data Encryption 
Standard (DES), and one-time pad (“Vernam cipher”).

2. In public-key cryptography [4], a public key (known to everyone) and a secret key (known only to the receiver) are used: 
the sender uses the public key for encrypting his or her message, and the receiver uses the secret key for decrypting 
the message. Examples of public-key ciphers include RSA [5] and elliptic curve cryptography.

One of the main problems with current public-key cryptography is that its security is usually not formally proved. More-
over, its security relies on the computational hardness of specific computational problems, such as integer factorization and 
discrete logarithm (that can both be efficiently solved on a quantum computer, by using Shor’s factorization algorithm [6]; 
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therefore, if a scalable quantum computer is successfully built in the future, the security of many public-key ciphers, includ-
ing RSA and elliptic curve cryptography, will be broken). Symmetric-key cryptography requires a secret key to be shared in 
advance between the sender and the receiver (in other words, if the sender and the receiver want to share a secret message, 
they must share a secret key beforehand). Moreover, no security proofs for many current symmetric-key ciphers, such as 
AES and DES, are known (even if one is allowed to rely on the computational hardness of problems), and unconditional 
security proofs against computationally-unlimited adversaries are impossible unless the secret key is used only once and is 
at least as long as the secret message [7].

The one-time pad (symmetric-key) cipher, that, given a message M and a secret key K of the same length, defines the 
encrypted message C to be C = M ⊕ K (and then decryption can be performed by computing M = C ⊕ K ), is fully and 
unconditionally secure against any adversary [7]: namely, even if the adversary Eve intercepts the encrypted message C , she 
gains no information about the original message M (assuming that she has no information about the secret key K ). This 
means that, for obtaining perfect secrecy, all that is needed is an efficient way for sharing a random secret key between the 
sender and the receiver; unfortunately, “classical key distribution” cannot be achieved in a fully secure way if the adversary 
can listen to all the communication between the sender and the receiver.

Quantum key distribution (QKD) protocols take advantage of the laws of quantum mechanics for achieving fully and 
unconditionally secure key distribution, so that their resulting final key can later be used by other cryptographic primitives 
(e.g., one-time pad encryption). Most of the QKD protocols have security proofs applicable even against adversaries whose 
only limitations are the laws of nature (and who are otherwise capable of solving any computational problem and of 
performing any physically-allowed operation). The two parties (the first party is usually named “Alice”, and the second 
party is usually named “Bob”) want to create a shared random key, and they use an insecure quantum channel and an 
unjammable classical channel (to which the adversary may listen, but not interfere). The adversary (eavesdropper), Eve, 
tries to get as much information as she can on the final shared key. The first and most important QKD protocol is BB84 [8], 
that uses four possible quantum states (see details below), and it has been proven fully and unconditionally secure.

Boyer, Gelles, and Mor [1] discussed the security of BB84 against collective attacks. The class of the “collective at-
tacks” [9–11] is an important and powerful subclass of the joint attacks; the class of the “joint attacks” includes all the 
theoretical attacks allowed by quantum physics. [1] improved the security proof of Biham, Boyer, Brassard, van de Graaf, 
and Mor [11] against collective attacks, by using some techniques of Biham, Boyer, Boykin, Mor, and Roychowdhury [12]
(that proved security against joint attacks). In this paper, too, we restrict the analysis to collective attacks, because secu-
rity against collective attacks is conjectured (and, in some security notions, proved [13,14]) to imply security against joint 
attacks. In addition, proving security against collective attacks is much simpler than proving security against joint attacks.

Other QKD protocols, either similar to BB84 or ones that use different approaches, have also been suggested, and in some 
cases have also been proven fully secure. In particular, the “three-state protocol” [15] uses only three quantum states, and it 
has been proven secure [16–18]; the “classical Bob” protocol [19] is a two-way protocol such that only Alice has quantum 
capabilities and Bob has only classical capabilities, and it has been proven robust [19] and secure [20]; and the “classical 
Alice” protocol [21] is similar to “classical Bob” with Alice being the classical participant instead of Bob, and it has been 
proven robust [22].

The above QKD protocols are all “Discrete-Variable” protocols. Two other classes of QKD protocols, “Continuous-Variable” 
protocols and “Distributed-Phase-Reference” protocols, have also been suggested; their security proofs are still weaker than 
the security proofs of “Discrete-Variable” protocols (see [23] for details).

QKD protocols can be used as a subroutine (secure key distribution) of more complicated cryptographic protocols. In 
other words, they can be integrated into a system in order to improve its security. See [24] for more details about this 
integration and about the practical usability of QKD compared to other methods.

In many QKD protocols, including BB84, Alice and Bob exchange several types of bits (encoded as quantum systems, 
usually qubits): INFO bits, that are secret bits shared by Alice and Bob and are used for generating the final key (via 
classical processes of error correction and privacy amplification); and TEST bits, that are publicly exposed by Alice and Bob 
(by using the classical channel) and are used for estimating the error rate. In BB84, each bit is sent from Alice to Bob in a 
random basis (the z basis or the x basis).

In this paper, we extend the analysis of BB84 done in [1] and prove the security of a QKD protocol we shall name 
BB84-INFO-z. This protocol is almost identical to BB84, except that all its INFO bits are in the z basis. In other words, the x
basis is used only for testing. The bits are thus partitioned into three disjoint sets: INFO, TEST-Z, and TEST-X. The sizes of 
these sets are arbitrary (n INFO bits, nz TEST-Z bits, and nx TEST-X bits).

We note that, while this paper follows a line of research that mainly discusses a specific approach of security proof for 
BB84 and similar protocols (this approach, notably, considers finite-key effects and not only the asymptotic error rate), many 
other approaches have also been suggested: see for example [25,26,13,27]. For comparison, see Section 4.

In the other papers ([9–12,1]) that discussed the same approach of security proofs as discussed here, the classical mutual 
information between Eve and the final key was calculated and bounded, which caused problems with composability (see 
definition in [13] and in Subsection 1.1). In contrast to those papers, in this paper we suggest a method to prove a fully 
composable security – namely, to calculate and bound the trace distance between the quantum state at the end of the real 
protocol and the quantum state at the end of an ideal protocol. This method is fully composable, because it bounds the 
distance between quantum states instead of bounding the classical information Eve has (bounding the classical information 
means, in particular, that we assume that Eve measures at the end of the protocol, while in reality she is not required to 
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measure then, but is allowed to wait until Alice and Bob use the final key). This method is implemented in this paper for 
proving the fully composable security of BB84-INFO-z against collective attacks; it also directly applies to the BB84 security 
proof in [1] against collective attacks, proving the fully composable security of BB84 against collective attacks. It may be 
extended in the future to show that the BB84 security proof of [12] proves the fully composable security of BB84 against 
joint attacks. (We note that in the conference version of this paper [2], we used a weaker security definition: it was not 
sufficient for proving fully composable security, but it was more composable than in the previous papers.)

The “qubit space”, H2, is a 2-dimensional Hilbert space. The states |00〉, |10〉 form an orthonormal basis of H2, called 
“the computational basis” or “the z basis”. The states |01〉 � |00〉+|10〉√

2
and |11〉 � |00〉−|10〉√

2
form another orthonormal basis of 

H2, called “the x basis”. Those two bases are said to be conjugate bases.
In this paper, we denote bit strings (of t bits, with t ≥ 0 being some integer) by a bold letter (e.g., i = i1 . . . it with 

i1, . . . , it ∈ {0, 1}); and we refer to those bit strings as elements of Ft
2 – that is, as elements of a t-dimensional vector space 

over the field F2 = {0, 1}, where addition of two vectors corresponds to a XOR operation between them. The number of 
1-bits in a bit string s is denoted by |s|, and the Hamming distance between two strings s and s′ is dH (s, s′) = |s + s′|.

1.1. Security definitions of quantum key distribution

Originally, a QKD protocol was defined to be secure if the (classical) mutual information between Eve’s information and 
the final key, maximized over all the possible attack strategies and measurements by Eve, is exponentially small in the 
number of qubits, N . Examples of security proofs of BB84 that use this security definition are [25,12,26]. Those security 
proofs used the observation that one cannot analyze the classical data held by Eve before privacy amplification (as done 
in [28]), but must analyze the quantum state held by Eve [29]. In other words, they assumed that Eve could keep her 
quantum state until the end of the protocol, and only then choose the optimal measurement (based on all the data she 
observed) and perform the measurement.

Later, it was noticed that this security definition may not be “composable”. In other words, the final key is secure if 
Eve measures the quantum state she holds at the end of the QKD protocol, but the proof does not apply to cryptographic 
applications (e.g., encryption) of the final key: Eve might gain non-negligible information after the key is used, even though 
her information on the key itself was negligible. This means that the proof is not sufficient for practical purposes. In 
particular, those applications may be insecure if Eve keeps her quantum state until Alice and Bob use the key (thus giving 
Eve some new information) and only then measures.

Therefore, a new notion of “(composable) full security” was defined [30,27,13] by using the trace distance between 
quantum states, following universal composability definitions for non-quantum cryptography [31,32]. Intuitively, this notion 
means that the final joint quantum state of Alice, Bob, and Eve at the end of the protocol is very close (namely, the trace 
distance is exponentially small in N) to their final state at the end of an ideal key distribution protocol, that distributes 
a completely random and secret final key to both Alice and Bob. In other words, if a QKD protocol is secure, then except 
with an exponentially small probability, one of the two following events happens: the protocol is aborted, or the secret key 
generated by the protocol is the same as a perfect key that is uniformly distributed (i.e., each possible key having the same 
probability), is the same for both parties, and is independent of the adversary’s information.

Formally, ρAB E is defined as the final quantum state of Alice, Bob, and Eve at the end of the protocol (with Alice’s 
and Bob’s states being simply the “classical” states |kA〉A and |kB〉B , where kA and kB are bit strings that are the final 
keys held by Alice and Bob, respectively (note that usually kA = kB ); and with Eve’s state including both her quantum 
probe and the classical information published in the unjammable classical channel); ρU is defined as the complete mixture 
of all the possible keys that are the same for Alice and Bob (namely, if the set of possible final keys is K , then ρU =

1
|K |

∑
k∈K |k〉A |k〉B〈k|A〈k|B ); and ρE is defined as the partial trace of ρAB E over the system AB . For the QKD protocol to be 

fully (and composably) secure, it is required that

1

2
tr |ρAB E − ρU ⊗ ρE | ≤ ε, (1)

where ε is exponentially small in N . Intuitively, ρAB E is the actual joint state of Alice, Bob, and Eve at the end of the QKD 
protocol; ρU is the ideal final state of Alice and Bob (an equal mixture of all the possible final keys, that is completely 
uncorrelated with Eve and is the same for Alice and Bob); and ρE is the state of Eve, uncorrelated with the states of Alice 
and Bob. Note that cases in which the protocol is aborted are represented by the zero operator: see [13, Subsection 6.1.2]
for details.

Composable security of many QKD protocols, including BB84, has been proved [30,27,13].

2. Full definition of the “BB84-INFO-z” protocol

Below we formally define all the steps of the BB84-INFO-z protocol, as used in this paper.

1. Before the protocol, Alice and Bob choose some shared (and public) parameters: numbers n, nz , and nx (we denote N �
n + nz + nx), error thresholds pa,z and pa,x , an r × n parity check matrix P C (corresponding to a linear error-correcting 
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code C ), and an m × n privacy amplification matrix P K (representing a linear key-generation function). It is required 
that all the r + m rows of the matrices P C and P K put together are linearly independent.

2. Alice randomly chooses a partition P = (s, z, b) of the N bits by randomly choosing three N-bit strings s, z, b ∈ FN
2 that 

satisfy |s| = n, |z| = nz, |b| = nx , and |s + z + b| = N . Thus, P partitions the set of indexes {1, 2, ..., N} into three disjoint 
sets:
• I (INFO bits, where s j = 1) of size n;
• T Z (TEST-Z bits, where z j = 1) of size nz; and
• T X (TEST-X bits, where b j = 1) of size nx .

3. Alice randomly chooses an N-bit string i ∈ FN
2 and sends the N qubit states |ib1

1 〉, |ib2
2 〉, . . . , |ibN

N 〉, one after the other, to 
Bob using the quantum channel. Notice that Alice uses the z basis for sending the INFO and TEST-Z bits, and that she 
uses the x basis for sending the TEST-X bits. Bob keeps each received qubit in quantum memory, not measuring it yet.1

4. Alice sends to Bob over the classical channel the bit string b = b1 . . .bN . Bob measures each of the qubits he saved in 
the correct basis (namely, when measuring the i-th qubit, he measures it in the z basis if bi = 0, and he measures it in 
the x basis if bi = 1).
The bit string measured by Bob is denoted by iB . If there is no noise and no eavesdropping, then iB = i.

5. Alice sends to Bob over the classical channel the bit string s. The INFO bits (that will be used for creating the final key) 
are the n bits with s j = 1, while the TEST-Z and TEST-X bits (that will be used for testing) are the nz + nx bits with 
s j = 0. We denote the substrings of i, b that correspond to the INFO bits by is and bs , respectively.

6. Alice and Bob both publish the bit values they have for all the TEST-Z and TEST-X bits, and they compare the bit values. 
If more than nz · pa,z TEST-Z bits are different between Alice and Bob or more than nx · pa,x TEST-X bits are different 
between them, they abort the protocol. We note that pa,z and pa,x (the pre-agreed error thresholds) are the maximal 
allowed error rates on the TEST-Z and TEST-X bits, respectively – namely, in each basis (z and x) separately.

7. The values of the remaining n bits (the INFO bits, with s j =1) are kept in secret by Alice and Bob. The bit string of Alice 
is denoted x = is , and the bit string of Bob is denoted xB .

8. Alice sends to Bob the syndrome of x (with respect to the error-correcting code C and to its corresponding parity check 
matrix P C ), that consists of r bits and is defined as ξ = xP T

C . By using ξ , Bob corrects the errors in his xB string (so 
that it is the same as x).

9. The final key consists of m bits and is defined as k = xP T
K . Both Alice and Bob compute it.

The protocol is defined similarly to BB84 (and to its description in [1]), except that it uses the generalized bit numbers 
n, nz , and nx (numbers of INFO, TEST-Z, and TEST-X bits, respectively); that it uses the partition P = (s, z, b) for dividing 
the N-bit string i into three disjoint sets of indexes (I , T Z , and T X ); and that it uses two separate thresholds (pa,z and pa,x) 
instead of one (pa).

3. Proof of security for the BB84-INFO-z protocol against collective attacks

3.1. The general collective attack of Eve

Before the QKD protocol is performed (and, thus, independently of i and P), Eve chooses some collective attack to 
perform. A collective attack is bitwise: it attacks each qubit separately, by using a separate probe (ancillary state). Each 
probe is attached by Eve to the quantum state, and Eve saves it in a quantum memory. Eve can keep her quantum probes 
indefinitely, even after the final key is used by Alice and Bob; and she can perform, at any time of her choice, an optimal 
measurement of all her probes together, chosen based on all the information she has at the time of the measurement 
(including the classical information sent during the protocol, and including the information she acquires when Alice and 
Bob use the key).

Given the j-th qubit |ib j

j 〉T j sent from Alice to Bob (1 ≤ j ≤ N), Eve attaches a probe state |0E 〉E j and applies some 

unitary operator U j of her choice to the compound system |0E 〉E j |ib j

j 〉T j . Then, Eve keeps to herself (in a quantum memory) 
the subsystem E j , which is her probe state; and sends to Bob the subsystem T j , which is the qubit sent from Alice to Bob 
(which may have been modified by her attack U j).

The most general collective attack U j of Eve on the j-th qubit, represented in the orthonormal basis {|0b j 〉T j , |1b j 〉T j }, is

U j|0E 〉E j |0b j 〉T j = |Eb j
00〉E j |0b j 〉T j + |Eb j

01〉E j |1b j 〉T j (2)

U j|0E〉E j |1b j 〉T j = |Eb j
10〉E j |0b j 〉T j + |Eb j

11〉E j |1b j 〉T j , (3)

1 Here we assume that Bob has a quantum memory and can delay his measurement. In practical implementations, Bob usually cannot do that, but is 
assumed to measure in a randomly-chosen basis (z or x), so that Alice and Bob later discard the qubits measured in the wrong basis. In that case, we need 
to assume that Alice sends more than N qubits, so that N qubits are finally detected by Bob and measured in the correct basis. In the original scheme, 
the probability of choosing each basis (z or x) was 1

2 , which caused half of the sent qubits to be lost; in the improved scheme suggested by [33], the 
probability of choosing the z basis can be much higher, which means that much less qubits get lost.
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where |Eb j

00〉E j , |Eb j

01〉E j , |Eb j

10〉E j , and |Eb j
11〉E j are non-normalized states in Eve’s probe system E j attached to the j-th qubit.

We thus notice that Eve can modify the original product state of the compound system, |0E 〉E j |ib j

j 〉T j , into an entangled 

state (e.g., |Eb j
00〉E j |0b j 〉T j + |Eb j

01〉E j |1b j 〉T j ). Eve’s attack may thus cause Bob’s state to become entangled with her probe. On 
the one hand, this may give Eve some information on Bob’s state; on the other hand, this causes disturbance that may be 
detected by Bob. The security proof shows that the information obtained by Eve and the disturbance caused by Eve are 
inherently correlated: this is the basic reason QKD protocols are secure.

3.2. Results from [1]

The security proof of BB84-INFO-z against collective attacks is very similar to the security proof of BB84 itself against 
collective attacks, that was detailed in [1]. Most parts of the proof are not affected at all by the changes made to BB84 to 
get the BB84-INFO-z protocol (changes detailed in Section 2 of the current paper), because those parts assume fixed strings 
s and b, and because the attack is collective (so the analysis is restricted to the INFO bits).

Therefore, the reader is referred to the proof in Section 2 and Subsections 3.1 to 3.5 of [1], that applies to BB84-INFO-z
without any changes (except changing the total number of bits, 2n, to N , which does not affect the proof at all), and that 
will not be repeated here.

We denote the rows of the error-correction parity check matrix P C as the vectors v1, . . . , vr in Fn
2, and the rows of the 

privacy amplification matrix P K as the vectors vr+1, . . . , vr+m . We also define, for every r′ , Vr′ � Span{v1, ..., vr′ }; and we 
define

dr,m � min
r≤r′<r+m

dH (vr′+1, Vr′) = min
r≤r′<r+m

dr′,1. (4)

For a 1-bit final key k ∈ {0, 1}, we define ρ̂k to be the state of Eve corresponding to the final key k, given that she 
knows ξ . Thus,

ρ̂k = 1

2n−r−1

∑
x

∣∣ xP T
C = ξ

x · vr+1 = k

ρb′
x , (5)

where ρb′
x is Eve’s state after the attack, given that Alice sent the INFO bit string x encoded in the bases b′ = bs . In [1], 

the state ρ̃k was also defined: it is a lift-up of ρ̂k (which means that ρ̂k is a partial trace of ρ̃k), in which the states ρb′
x

appearing in ρ̂k are replaced by their purifications (see full definition in Subsection 3.4 of [1]).
In the end of Subsection 3.5 of [1], it was found that (in the case of a 1-bit final key, i.e., m = 1)

1

2
tr |ρ̃0 − ρ̃1| ≤ 2

√
P

[
|CI | ≥ dr,1

2
| BI = b′, s

]
, (6)

where CI is a random variable whose value is the n-bit string of errors on the n INFO bits; BI is a random variable whose 
value is the n-bit string of bases of the n INFO bits; b′ is the bit-flipped string of b′ = bs; and dr,1 (and, in general, dr,m) 
was defined above.

Now, according to [34, Theorem 9.2 and page 407], and using the fact that ρ̂k is a partial trace of ρ̃k , we find that 
1
2 tr |ρ̂0 − ρ̂1| ≤ 1

2 tr |ρ̃0 − ρ̃1|. From this result and from inequality (6) we deduce that

1

2
tr |ρ̂0 − ρ̂1| ≤ 2

√
P

[
|CI | ≥ dr,1

2
| BI = b′, s

]
. (7)

3.3. Bounding the differences between Eve’s states

We define c � i + iB : namely, c is the XOR of the N-bit string i sent by Alice and of the N-bit string iB measured by Bob. 
For all indexes 1 ≤ l ≤ N , cl = 1 if and only if Bob’s l-th bit value is different from the l-th bit sent by Alice. The partition 
P divides the N bits into n INFO bits, nz TEST-Z bits, and nx TEST-X bits. The corresponding substrings of the error string c
are cs (the string of errors on the INFO bits), cz (the string of errors on the TEST-Z bits), and cb (the string of errors on the 
TEST-X bits). The random variables that correspond to cs , cz , and cb are denoted by CI , CT Z , and CT X , respectively.

We define C̃I to be a random variable whose value is the string of errors on the INFO bits if Alice had encoded and sent the 
INFO bits in the x basis (instead of the z basis dictated by the protocol). In those notations, inequality (7) reads as

1

2
tr |ρ̂0 − ρ̂1| ≤ 2

√
P

[
|C̃I | ≥ dr,1

2
| P

]
= 2

√
P

[
|C̃I | ≥ dr,1

2
| cz, cb,P

]
, (8)
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using the fact that Eve’s attack is collective, so the qubits are attacked independently, and, therefore, the errors on the INFO 
bits are independent of the errors on the TEST-Z and TEST-X bits (namely, of cz and cb).

As explained in [1], inequality (8) was not derived for the actual attack U = U1 ⊗ . . . ⊗ U N applied by Eve, but for a 
virtual flat attack (that depends on b and therefore could not have been applied by Eve). That flat attack gives the same 
states ρ̂0 and ρ̂1 as given by the original attack U , and it gives a lower (or the same) error rate in the conjugate basis. 
Therefore, inequality (8) holds for the original attack U , too. This means that, starting from this point, all our results apply 
to the original attack U rather than to the flat attack.

So far, we have discussed a 1-bit key. We will now discuss a general m-bit key k. We define ρ̂k to be the state of Eve 
corresponding to the final key k, given that she knows ξ :

ρ̂k = 1

2n−r−m

∑
x

∣∣ xP T
C = ξ

xP T
K = k

ρb′
x (9)

Proposition 1. For any two keys k, k′ of m bits,

1

2
tr |ρ̂k − ρ̂k′ | ≤ 2m

√
P

[
|C̃I | ≥ dr,m

2
| cz, cb,P

]
. (10)

Proof. We define the key k j , for 0 ≤ j ≤ m, to consist of the first j bits of k′ and the last m − j bits of k. This means that 
k0 = k, km = k′ , and k j−1 differs from k j at most on a single bit (the j-th bit).

First, we find a bound on 1
2 tr |ρ̂k j−1 − ρ̂k j |: since k j−1 differs from k j at most on a single bit (the j-th bit, given by the 

formula x · vr+ j ), we can use the same proof that gave us inequality (8), attaching the other (identical) key bits to ξ of the 
original proof; and we find that

1

2
tr |ρ̂k j−1 − ρ̂k j | ≤ 2

√
P

[
|C̃I | ≥ d j

2
| cz, cb,P

]
, (11)

where we define d j as dH (vr+ j, V ′
j), and V ′

j � Span{v1, v2, . . . , vr+ j−1, vr+ j+1, . . . , vr+m}.
Now we notice that d j is the Hamming distance between vr+ j and some vector in V ′

j , which means that d j =∣∣∑r+m
i=1 ai vi

∣∣ with ai ∈ F2 and ar+ j �= 0. The properties of Hamming distance assure us that d j is at least dH (vr′+1, Vr′)
for some r ≤ r′ < r + m. Therefore, we find that dr,m = minr≤r′<r+m dH (vr′+1, Vr′) ≤ d j .

The result dr,m ≤ d j implies that if |C̃I | ≥ d j
2 then |C̃I | ≥ dr,m

2 . Therefore, inequality (11) implies

1

2
tr |ρ̂k j−1 − ρ̂k j | ≤ 2

√
P

[
|C̃I | ≥ dr,m

2
| cz, cb,P

]
. (12)

Now we use the triangle inequality for norms to find

1

2
tr |ρ̂k − ρ̂k′ | = 1

2
tr |ρ̂k0 − ρ̂km | ≤

m∑
j=1

1

2
tr |ρ̂k j−1 − ρ̂k j |

≤ 2m

√
P

[
|C̃I | ≥ dr,m

2
| cz, cb,P

]
, (13)

as we wanted. �
We would now like to bound the expected value (namely, the average value) of the trace distance between two states of 

Eve corresponding to two final keys. However, we should take into account that if the test fails, no final key is generated, 
in which case we define the distance to be 0. We thus define the random variable �(pa,z,pa,x)

Eve (k, k′) for any two final keys 
k, k′:

�
(pa,z,pa,x)

Eve (k,k′|P, ξ , cz, cb) �

⎧⎨⎩ 1
2 tr |ρ̂k − ρ̂k′ | if

|cz|
nz

≤ pa,z and
|cb|
nx

≤ pa,x

0 otherwise
(14)

We need to bound the expected value 〈�(pa,z,pa,x)

Eve (k, k′)〉, that is given by:

〈�(pa,z,pa,x)

Eve (k,k′)〉 =
∑

�
(pa,z,pa,x)

Eve (k,k′|P, ξ , cz, cb) · p(P, ξ , cz, cb) (15)

P,ξ ,cz,cb
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(In Subsection 3.6 we prove that this expected value is indeed the quantity we need to bound for proving fully composable 
security, defined in Subsection 1.1.)

Theorem 2.

〈�(pa,z,pa,x)

Eve (k,k′)〉 ≤ 2m

√
P

[( |C̃I |
n ≥ dr,m

2n

)
∧

( |CT Z |
nz

≤ pa,z

)
∧

( |CT X |
nx

≤ pa,x

)]
(16)

where |C̃I |
n is a random variable whose value is the error rate on the INFO bits if they had been encoded in the x basis, |CT Z |

nz
is a random 

variable whose value is the error rate on the TEST-Z bits, and |CT X |
nx

is a random variable whose value is the error rate on the TEST-X bits.

Proof. We use the convexity of x2, namely, the fact that for all {pi}i satisfying pi ≥ 0 and 
∑

i pi = 1, it holds that (∑
i pi xi

)2 ≤ ∑
i pi x2

i . We find that:

〈�(pa,z,pa,x)

Eve (k,k′)〉2

=
⎡⎣ ∑
P,ξ ,cz,cb

�
(pa,z,pa,x)

Eve (k,k′|P, ξ , cz, cb) · p(P, ξ , cz, cb)

⎤⎦2

(by (15))

≤
∑

P,ξ ,cz,cb

(
�

(pa,z,pa,x)

Eve (k,k′|P, ξ , cz, cb)
)2 · p(P, ξ , cz, cb) (by convexity of x2)

=
∑

P,ξ ,
|cz |
nz

≤pa,z,
|cb |
nx

≤pa,x

( 1
2 tr |ρ̂k − ρ̂k′ |)2 · p(P, ξ , cz, cb) (by (14))

≤ 4m2 ·
∑

P,ξ ,
|cz |
nz

≤pa,z,
|cb |
nx

≤pa,x

P
[
|C̃I | ≥ dr,m

2 | cz, cb,P
]
· p(P, ξ , cz, cb) (by (10))

= 4m2 ·
∑

P,
|cz |
nz

≤pa,z,
|cb |
nx

≤pa,x

P
[
|C̃I | ≥ dr,m

2 | cz, cb,P
]
· p(P, cz, cb)

= 4m2 ·
∑
P

P
[(

|C̃I | ≥ dr,m
2

)
∧

( |CT Z |
nz

≤ pa,z

)
∧

( |CT X |
nx

≤ pa,x

)
| P

]
· p(P)

= 4m2 · P
[(

|C̃I | ≥ dr,m
2

)
∧

( |CT Z |
nz

≤ pa,z

)
∧

( |CT X |
nx

≤ pa,x

)]
(17)

as we wanted. �
3.4. Proof of security

Following [1] and [12], we choose matrices P C and P K such that the inequality dr,m
2n > pa,x + ε is satisfied for some ε

(we will explain in Subsection 3.7 why this is possible). This means that

P
[( |C̃I |

n ≥ dr,m
2n

)
∧

( |CT Z |
nz

≤ pa,z

)
∧

( |CT X |
nx

≤ pa,x

)]
≤ P

[( |C̃I |
n > pa,x + ε

)
∧

( |CT X |
nx

≤ pa,x

)]
. (18)

We will now prove the right-hand-side of (18) to be exponentially small in n.
As said earlier, the random variable C̃I corresponds to the bit string of errors on the INFO bits if they had been encoded 

in the x basis. The TEST-X bits are also encoded in the x basis, and the random variable CT X corresponds to the bit string 
of errors on those bits. Therefore, we can treat the selection of the indexes of the n INFO bits and the nx TEST-X bits as a 
random sampling (after the numbers n, nz , and nx and the indexes of the TEST-Z bits have all already been chosen) and use 
Hoeffding’s theorem (that is described in Appendix A of [1]).

Therefore, for each bit string c1 . . . cn+nx that consists of the errors in the n + nx INFO and TEST-X bits if the INFO bits had 
been encoded in the x basis, we apply Hoeffding’s theorem: namely, we take a sample of size n without replacement from 
the population c1, . . . , cn+nx (this corresponds to the random selection of the indexes of the INFO bits and the TEST-X bits, 
as defined above, given that the indexes of the TEST-Z bits have already been chosen). Let X = |C̃I |

n be the average of the 
sample (this is exactly the error rate on the INFO bits, assuming, again, that the INFO bits had been encoded in the x basis); 
and let μ = |C̃I |+|CT X |

be the expectancy of X (this is exactly the error rate on the INFO bits and TEST-X bits together). Then 
n+nx
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|CT X |
nx

≤ pa,x is equivalent to (n + nx)μ − nX ≤ nx · pa,x , and, therefore, to n · (X − μ) ≥ nx · (μ − pa,x). This means that the 

conditions 
( |C̃I |

n > pa,x + ε
)

and 
( |CT X |

nx
≤ pa,x

)
rewrite to

(
X − μ > ε + pa,x − μ

) ∧
(

n

nx
· (X − μ) ≥ μ − pa,x

)
, (19)

which implies 
(

1 + n
nx

)
(X − μ) > ε , which is equivalent to X − μ > nx

n+nx
ε . Using Hoeffding’s theorem (from Appendix A 

of [1]), we get:

P

[( |C̃I |
n

> pa,x + ε

)
∧

( |CT X |
nx

≤ pa,x

)]
≤ P

[
X − μ >

nx

n + nx
ε

]
≤ e

−2
( nx

n+nx

)2
nε2

(20)

In the above discussion, we have actually proved the following Theorem:

Theorem 3. Let us be given δ > 0, R > 0, and, for infinitely many values of n, a family {vn
1, . . . , v

n
rn+mn

} of linearly independent vectors 
in Fn

2 such that δ <
drn ,mn

n and mn
n ≤ R. Then for any pa,z, pa,x > 0 and εsec > 0 such that pa,x + εsec ≤ δ

2 , and for any n, nz, nx > 0
and two mn-bit final keys k, k′ , the distance between Eve’s states corresponding to k and k′ satisfies the following bound:

〈�(pa,z,pa,x)

Eve (k,k′)〉 ≤ 2R ne
−

( nx
n+nx

)2
nε2

sec (21)

In Subsection 3.7 we explain why the vectors required by this Theorem exist.
We note that the quantity 〈�(pa,z,pa,x)

Eve (k, k′)〉 bounds the expected values of the Shannon Distinguishability and of the 
mutual information between Eve and the final key, as done in [1] and [12], which is sufficient for proving non-composable 
security; but it also avoids composability problems: Eve is not required to measure immediately after the protocol ends, but 
she is allowed to wait until she gets more information. In Subsection 3.6 we use this bound for proving a fully composable 
security.

3.5. Reliability

Security itself is not sufficient; we also need the key to be reliable (namely, to be the same for Alice and Bob). This 
means that we should make sure that the number of errors on the INFO bits is less than the maximal number of errors that 
can be corrected by the error-correcting code. We demand that our error-correcting code can correct n(pa,z + εrel) errors 
(we explain in Subsection 3.7 why this demand is satisfied). Therefore, reliability of the final key with exponentially small 
probability of failure is guaranteed by the following inequality: (as said, CI corresponds to the actual bit string of errors on 
the INFO bits in the protocol, when they are encoded in the z basis)

P

[( |CI |
n

> pa,z + εrel

)
∧

( |CT Z |
nz

≤ pa,z

)]
≤ e

−2
( nz

n+nz

)2
nε2

rel (22)

This inequality is proved by an argument similar to the one used in Subsection 3.4: the selection of the indexes of the INFO 
bits and the TEST-Z bits is a random partition of n + nz bits into two subsets of sizes n and nz , respectively (assuming that 
the indexes of the TEST-X bits have already been chosen), and thus it corresponds to Hoeffding’s sampling.

3.6. Proof of fully composable security

We now prove that the BB84-INFO-z protocol satisfies the definition of composable security for a QKD protocol: namely, 
that it satisfies equation (1) presented in Subsection 1.1. We prove that the expression 1

2 tr |ρAB E − ρU ⊗ ρE | is exponentially 
small in n, with ρAB E being the actual joint state of Alice, Bob, and Eve; ρU being an ideal (random, secret, and shared) key 
distributed to Alice and Bob; and ρE being the partial trace of ρAB E over the system AB .

To make reading easier, we use the following notations, where i is the bit string sent by Alice, iB is the bit string received 
by Bob, and c = i ⊕ iB is the string of errors:

iAB
T �

(
iz, ib, iB

z , iB
b

)
(23)

T �
{

1 if |cz|
nz

≤ pa,z and |cb|
nx

≤ pa,x

0 otherwise
(24)

In other words, iAB
T consists of all the TEST-Z and TEST-X bits of Alice and Bob; and T is the random variable representing 

the result of the test.
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According to the above definitions, the states ρAB E and ρU are

ρAB E =
∑

i,iB ,P|T=1

P
(

i, iB ,P
)

· |k〉A〈k|A ⊗ |k′〉B〈k′|B

⊗
(
ρb′

x,xB

)
E

⊗ |iAB
T ,P, ξ 〉C 〈iAB

T ,P, ξ |C (25)

ρU = 1

2m

∑
k

|k〉A〈k|A ⊗ |k〉B〈k|B , (26)

where 
(
ρb′

x,xB

)
E

is defined to be Eve’s quantum state if Alice sends the INFO string x = is in the bases b′ = bs and Bob 

gets the INFO string xB = iB
s . All the other states actually represent classical information: subsystems A and B represent the 

final keys held by Alice (k = xP T
K ) and Bob (k′ , that is obtained from xB , ξ = xP T

C , and P K ), and subsystem C represents 
the information published in the unjammable classical channel during the protocol (this information is known to Alice, Bob, 
and Eve) – namely, iAB

T (all the test bits), P (the partition), and ξ = xP T
C (the syndrome).

We note that in the definition of ρAB E , we sum only over the events in which the test is passed (namely, in which the 
protocol is not aborted by Alice and Bob): in such cases, an m-bit key is generated. The cases in which the protocol aborts 
do not exist in the sum – namely, they are represented by the zero operator, as required by the definition of composable 
security (see Subsection 1.1 and [13, Subsection 6.1.2]). Thus, ρAB E is a non-normalized state, and tr(ρAB E ) is the probability 
that the test is passed.

To help us bound the trace distance, we define the following intermediate state:

ρ ′
AB E �

∑
i,iB ,P|T=1

P
(

i, iB ,P
)

· |k〉A〈k|A ⊗ |k〉B〈k|B

⊗
(
ρb′

x,xB

)
E

⊗ |iAB
T ,P, ξ 〉C 〈iAB

T ,P, ξ |C (27)

This state is identical to ρAB E , except that Bob holds the Alice’s final key (k) instead of his own calculated final key (k′). In 
particular, the similarity between ρAB E and ρ ′

AB E means, by definition, that ρE � trAB (ρAB E ) and ρ ′
E � trAB

(
ρ ′

AB E

)
are the 

same state: namely, ρE = ρ ′
E .

Proposition 4. Under the same conditions as Theorem 3, it holds that

1

2
tr

∣∣ρ ′
AB E − ρU ⊗ ρE

∣∣ ≤ 2R ne
−

( nx
n+nx

)2
nε2

sec , (28)

for ρ ′
AB E and ρU defined above and for the partial trace ρE � trAB (ρAB E ).

Proof. We notice that in ρ ′
AB E , the only factors depending directly on x and xB (and not only on k and ξ ) are the probability 

P
(
i, iB ,P

)
and Eve’s state 

(
ρb′

x,xB

)
E

. The probability can be reformulated as:

P
(

i, iB ,P
)

= P
(

iAB
T ,P, ξ

)
· P

(
k | iAB

T ,P, ξ
)

· P
(

x | k, iAB
T ,P, ξ

)
· P

(
xB | x,k, iAB

T ,P, ξ
)

= P
(

iAB
T ,P, ξ

)
· 1

2m
· 1

2n−r−m
· P

(
xB | x,k, iAB

T ,P, ξ
)

(29)

(Because all the possible n-bit values of x have the same probability, 1
2n ; and because all the r + m rows of the matrices P C

and P K are linearly independent, so there are exactly 2n−r−m values of x corresponding to each specific pair (ξ , k).)
Therefore, the state ρ ′

AB E takes the following form:

ρ ′
AB E = 1

2m

∑
k,iAB

T ,P,ξ |T=1

P
(

iAB
T ,P, ξ

)
· |k〉A〈k|A ⊗ |k〉B〈k|B

⊗

⎡⎢⎢⎢⎣ 1

2n−r−m

∑
x,xB

∣∣ xP T
C = ξ

xP T
K = k

P
(

xB | x,k, iAB
T ,P, ξ

)
·
(
ρb′

x,xB

)
E

⎤⎥⎥⎥⎦
⊗ |iAB ,P, ξ 〉C 〈iAB ,P, ξ |
T T C
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= 1

2m

∑
k,iAB

T ,P,ξ |T=1

P
(

iAB
T ,P, ξ

)
· |k〉A〈k|A ⊗ |k〉B〈k|B

⊗ (ρ̂k)E ⊗ |iAB
T ,P, ξ 〉C 〈iAB

T ,P, ξ |C (30)

(ρ̂k was defined in equation (9).)
The partial trace ρ ′

E = trAB
(
ρ ′

AB E

)
, that (as proved above) is the same as ρE , is

ρE = ρ ′
E = 1

2m

∑
k,iAB

T ,P,ξ |T=1

P
(

iAB
T ,P, ξ

)
· (ρ̂k)E ⊗ |iAB

T ,P, ξ 〉C 〈iAB
T ,P, ξ |C , (31)

and the state ρU ⊗ ρE is

ρU ⊗ ρE = 1

22m

∑
k,k′′,iAB

T ,P,ξ |T=1

P
(

iAB
T ,P, ξ

)
· |k〉A〈k|A ⊗ |k〉B〈k|B

⊗ (ρ̂k′′)E ⊗ |iAB
T ,P, ξ 〉C 〈iAB

T ,P, ξ |C . (32)

By using the triangle inequality for norms, since ρ ′
AB E and ρU ⊗ρE are the same (except the difference between Eve’s states, 

(ρ̂k)E and (ρ̂k′′)E ), we get, by using the definition of 〈�(pa,z,pa,x)

Eve (k, k′′)〉 (equation (15)) and Theorem 3:

1

2
tr

∣∣ρ ′
AB E − ρU ⊗ ρE

∣∣ ≤ 1

22m

∑
k,k′′,iAB

T ,P,ξ |T=1

P
(

iAB
T ,P, ξ

)
· 1

2
tr

∣∣(ρ̂k)E − (ρ̂k′′)E

∣∣
= 1

22m

∑
k,k′′

〈�(pa,z,pa,x)

Eve (k,k′′)〉

≤ 2R ne
−

( nx
n+nx

)2
nε2

sec (33)

as we wanted. �
We still have to bound the following difference:

ρAB E − ρ ′
AB E =

∑
i,iB ,P|T=1

P
(

i, iB ,P
)

· |k〉A〈k|A ⊗ [|k′〉B〈k′|B − |k〉B〈k|B

]
⊗

(
ρb′

x,xB

)
E

⊗ |iAB
T ,P, ξ 〉C 〈iAB

T ,P, ξ |C
= P

((
k �= k′) ∧ (T = 1)

)
·

∑
i,iB ,P

P
(

i, iB ,P | (k �= k′) ∧ (T = 1)
)

· |k〉A〈k|A ⊗ [|k′〉B〈k′|B − |k〉B〈k|B

]
⊗

(
ρb′

x,xB

)
E

⊗ |iAB
T ,P, ξ 〉C 〈iAB

T ,P, ξ |C (34)

Because the trace distance between every two normalized states is bounded by 1, and because of the reliability proof in 
Subsection 3.5, we get:

1

2
tr

∣∣ρAB E − ρ ′
AB E

∣∣ ≤ P
((

k �= k′) ∧ (T = 1)
) ≤ e

−2
( nz

n+nz

)2
nε2

rel (35)

(Because if k �= k′ , Alice and Bob have different final keys, and this means that the error correction stage did not succeed. 
According to the discussion in Subsection 3.5, this can happen only if there are too many errors in the information string – 
namely, if |CI |

n > pa,z + εrel.)
To sum up, we get the following bound:

1

2
tr |ρAB E − ρU ⊗ ρE | ≤ 1

2
tr

∣∣ρAB E − ρ ′
AB E

∣∣ + 1

2
tr

∣∣ρ ′
AB E − ρU ⊗ ρE

∣∣
≤ e

−2
( nz

n+nz

)2
nε2

rel + 2R ne
−

( nx
n+nx

)2
nε2

sec (36)

This bound is exponentially small in n. Thus, we have proved the composable security of BB84-INFO-z.
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Fig. 1. The secure asymptotic error rates zone for BB84-INFO-z (below the curve).

3.7. Security, reliability, and error rate threshold

According to Theorem 3 and to the discussion in Subsection 3.5, to get both security and reliability we only need vectors 
{vn

1, . . . , v
n
rn+mn

} satisfying both the conditions of the Theorem (distance drn ,mn
2n > δ

2 ≥ pa,x +εsec) and the reliability condition 
(the ability to correct n(pa,z + εrel) errors). Such families were proven to exist in Appendix E of [12], giving the following 
upper bound on the bit-rate:

Rsecret � m

n
< 1 − H2(2pa,x + 2εsec) − H2

(
pa,z + εrel + 1

n

)
(37)

where H2(x) � −x log2(x) − (1 − x) log2(1 − x).
Note that we use here the error thresholds pa,x for security and pa,z for reliability. This is possible, because in [12] those 

conditions (security and reliability) on the codes are discussed separately.
To get the asymptotic error rate thresholds, we require Rsecret > 0, and we get the condition:

H2(2pa,x + 2εsec) + H2

(
pa,z + εrel + 1

n

)
< 1 (38)

The secure asymptotic error rate thresholds zone is shown in Fig. 1 (it is below the curve), assuming that 1
n is negligible. 

Note the trade-off between the error rates pa,z and pa,x . Also note that in the case pa,z = pa,x , we get the same threshold 
as BB84 ([12] and [1]), which is 7.56%.

4. Discussion

In the current paper, we have proved the BB84-INFO-z protocol to be fully secure against collective attacks. We have 
discovered that the results of BB84 hold very similarly for BB84-INFO-z, with only two exceptions:

1. The error rates must be separately checked to be below the thresholds pa,z and pa,x for the TEST-Z and TEST-X bits, 
respectively, while in BB84 the error rate threshold pa applies to all the TEST bits together.

2. The exponents of Eve’s information (security) and of the failure probability of the error-correcting code (reliability) are 
different than in [1], because different numbers of test bits are now allowed (nz and nx are arbitrary). This implies that 
the exponents may decrease more slowly (or more quickly) as a function of n. However, if we choose nz = nx = n (thus 
sending N = 3n qubits from Alice to Bob), then we get exactly the same exponents as in [1].

The asymptotic error rate thresholds found in this paper allow us to tolerate a higher threshold for a specific basis (say, 
the x basis) if we demand a lower threshold for the other basis (z). If we choose the same error rate threshold for both 
bases, then the asymptotic bound is 7.56%, exactly the bound found for BB84 in [12] and [1].

We conclude that even if we change the BB84 protocol to have INFO bits only in the z basis, this does not harm its 
security and reliability (at least against collective attacks). This does not even change the asymptotic error rate threshold. 
The only drawbacks of this change are the need to check the error rate for the two bases separately, and the need to either 
send more qubits (3n qubits in total, rather than 2n) or get a slower exponential decrease of the exponents required for 
security and reliability.

We thus find that the feature of BB84, that both bases are used for information, is not very important for security and 
reliability, and that BB84-INFO-z (that lacks this feature) is almost as useful as BB84. This may have important implications 
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on the security and reliability of other protocols that, too, use only one basis for information qubits, such as [15] and some 
two-way protocols [19,21].

We also present a better approach for the proof, that uses the quantum distance between two states rather than the 
classical information. In [1], [11], and [12], the classical mutual information between Eve’s information (after an optimal 
measurement) and the final key was calculated (by using the trace distance between two quantum states); although we 
should note that in [1] and [12], the trace distance was used for the proof of security of a single bit of the final key 
even when all other bits are given to Eve, and only the last stages of the proof discussed bounding the classical mutual 
information. In the current paper, on the other hand, we use the trace distance between the two quantum states until the 
end of the proof, which allows us to prove fully composable security.

Therefore, our proof shows the fully composable security of BB84-INFO-z against collective attacks (and, in particular, 
security even if Eve keeps her quantum states until she gets more information when Alice and Bob use the key, rather 
than measuring them at the end of the protocol); and a very similar approach can be applied to [1], immediately proving 
the composable security of BB84 against collective attacks. Our proof also makes a step towards making the security proof 
in [12] (security proof of BB84 against joint attacks) prove the composable security of BB84 against joint attacks.

Our results show that the BB84-INFO-z protocol can be securely used for distributing a secret key; the security is of an 
ideal implementation and against an adversary limited to collective attacks (it may be possible to generalize the proof, so 
that it applies to the most general attacks (joint attacks), by using the methods of [12], but such generalization is beyond 
the scope of the current paper). Moreover, the security of the final key is universally composable, which means that the key 
may be used for any cryptographic purpose without harming the security, even if Eve keeps her quantum states and uses 
all the information she gets in the future in an optimal way.

The techniques described in our proof may be applied in the future for proving the security of other protocols by 
using similar methods, and, in particular, for proving the security of other QKD protocols that use only one basis for the 
information bits, such as [15,19,21] mentioned above.

We note that this paper strengthens the security proofs described in [1,11,12], both because it slightly generalizes them 
(from security of BB84 to security of BB84-INFO-z) and because it makes them composable. Those security proofs have 
various advantages over other methods to prove security: first of all, they are mostly self-contained, while other security 
proofs require many results from other areas of quantum information (such as various notions of entropy needed for the 
security proof of [13,27], and entanglement purification and quantum error correction needed for the security proof of [26]); 
second, they give tight finite-key bounds, unlike several other methods (see details below); and finally, at least in some 
sense, they are simpler than other proof techniques. On the other hand, their generality and their asymptotic error-rate 
threshold (7.56%, rather than 11% given by [27,26]) are yet to be improved by future research.

Our method for proving security gives explicit and tight finite-key bounds. In contrast to this, the security proof of [26]
gives only asymptotic results (for infinitely long keys). For the security proof of [13,27], it is proved today that for some 
protocols (including BB84), one can get tight finite-key bounds [35] that are the same as the ones found by our method; but 
at first that security method gave very pessimistic bounds (by using the de Finetti theorem [13,36]), and later, the bounds 
were improved for several protocols (including BB84) [37], but were still not tight (see [35] for comparison).

We also note that the existence of many different proof techniques is important, because some proofs may be more 
adjustable to various QKD protocols or to practical scenarios; some proofs may be clearer to different readers with differ-
ent backgrounds; analyzing the differences between the proofs and between their obtained results may lead to important 
insights on the strengths and weaknesses of various techniques; and the existence of many proofs makes the security result 
more certain and less prone to errors.

We note that our security proof, similarly to many other full security proofs of QKD, assumes an ideal implementation 
(of ideal quantum systems consisting of exactly one qubit) and theoretical attacks. Practical implementations of QKD, almost 
always using photons, exist (see [38,23] for details); their security analysis is much more complicated, because both Alice’s 
photon source and Bob’s detector devices have weaknesses and deviations from the theoretical protocol (especially when 
more than one photon is emitted by Alice or is sent by the eavesdropper). Those imperfections give rise to various practical 
attacks, such as the “Photon-Number Splitting” attack [39] (in which the eavesdropper takes advantage of emissions of two 
or more photons by Alice and gets full information) and the “Bright Illumination” attack [40] (in which the eavesdropper 
takes advantage of a weakness of specific detectors used by Bob and gets full information).

Possible solutions to those problems of actual physical realizations (see [38,23] for more details) include a much more 
careful analysis of the practical devices and of practical implementations; “Measurement-Device Independent” QKD proto-
cols [41–44], that may be secure even if the measurement devices are controlled by the adversary; and “Device Independent” 
QKD protocols [45–47], that may be secure even if all the quantum devices are controlled by the adversary (under certain 
assumptions).
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