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Abstract

A Bloch sphere is the geometrical representation of an arbitrary two-dimensional Hilbert space.
Possible classes of entanglement and separability for the pure and mixed states on the Bloch sphere
were suggested by [Boyer eral 2017 PRA 95 032 308]. Here we construct a Bloch sphere for the Hilbert
space spanned by one of the ground states of Kitaev’s toric code model and one of its closest product
states. We prove that this sphere contains only one separable state, thus belonging to the fourth class
suggested by the said paper. We furthermore study the topological order of the pure states on its
surface and conclude that, according to conventional definitions, only one state (the toric code ground
state) seems to present non-trivial topological order. We conjecture that most of the states on this
Bloch sphere are neither ‘trivial’ states (namely, they cannot be generated from a product state using a
trivial circuit) nor topologically ordered. In addition, we show that the whole setting can be
understood in terms of Grover rotations with gauge symmetry, akin to the quantum search algorithm.

Introduction

Topological order [1] (TO) is a type of order in quantum matter deeply rooted in quantum entanglement. As
such, TO cannot be detected by local order parameters. Some typical signatures of TO are anyonic excitations,
ground-state topological degeneracy, and indistinguishability of local reduced density matrices. Moreover,
topologically-ordered systems form the basis for lattice gauge theories [2] and have been proposed in several
aspects of quantum computation, including the construction of topologically-protected qubits and topological
quantum computation by anyonic braiding [3].

The study of robustness in TO has been considered from many angles. It is known that two-dimensional (2d)
TO survives local Hamiltonian perturbations at zero temperature [4], which leads to the notion of topological
phases of matter. However, 2d TO does not survive at finite temperature [5], at least formally. In practice,
though, there is a trade-off between different physical scales (temperature, size of the system, correlation length),
in such a way that TO may be kept approximately at finite temperatures under some circumstances. The
question whether 2d TO survives many-body localization or not has been recently addressed, too [6].

In this paper we show that 2d TO does not seem to survive under certain perturbations that can be
characterized by a Bloch sphere. More specifically, we study a perturbation of one of the ground states of Kitaev’s
toric code [3] by constructing a Bloch sphere with this state and one of its closest product states [7]. Following a
recent characterization of Bloch spheres [8], we prove that, independently of the chosen closest product state,
the spheres constructed this way include only one product state, and probably include only one topological state.
More precisely, our analysis indicates that the topological entanglement entropy changes continuously, and
hints to the fact that the conventional definitions of topological order are not satisfied for such states. We also
conjecture that those non-topological states are not ‘trivial’ states in the sense defined by [9, 10]. We
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Figure 1. Bloch sphere defined by the toric code ground state [¥) and one of its closest product states [0) = |0)®", as specified in the
text. The states [¥y) and |1) are the respective antipodal states. The different states on the surface of the sphere are characterized by
angles 6 and ¢. The interior corresponds to mixed states formed by convex combinations of the pure states on the surface.

subsequently show in the appendix that one can conveniently write the whole setting in terms of Grover
rotations with gauge symmetry, akin to the quantum search algorithm [11].

Setting

We consider the ground states of Kitaev’s toric code model [3]. This is a model of spins-1/2 (qubits) on the links
of asquare lattice, with Hamiltonian

N

Hrc=—-Y_A; — > B, (D
P

with star A;and plaquette B, operators respectively defined as

A, =[] 0'B, =[] oYL 2
jes jep

In the above equations, s is a star and p is a plaquette on the two-dimensional square lattice, and o'/!is the Pauli
matrix o atsite j. The properties of this model are well-known. In particular, its ground state manifold has
topological degeneracy: if the model is defined on a Riemann surface of genus g, then the ground state is 228-fold
degenerate. The ground state subspace is also a stabilized space of G, the group of all the possible products of
independent star operators. This group has size |G| = 2"~ !, where n, is the number of stars in the lattice. The —1
in the exponent is a consequence of the global constraint [[; A; = [], B, = I. Following [12], for a system with
n spins, one of the ground states of the model can always be written as

T0) = — 3 glo)", )
|G| geG
no matter what the topology of the underlying Riemann surface is.
Asproven in [7], the closest product states to | ¥p) are those of the form g|0)*", with g € G. For simplicity we
choose here the state |0) = |0)"”. This state, together with [), spans a two-dimensional Hilbert space defining
aBloch sphere. An arbitrary pure state in this space can be written as

10, ¢) = cos(g)l(_» + ei‘f’sin(g)IT), Y]
2 2
where 6 € [0,7]and ¢ € [0, 27], and the state | 1) is defined as
- 1
) = ——= > zlo)™ (5)

A |G|*1 g€G,g=1

This characterizes the surface of a Bloch sphere, as shown in figure 1, where |0) and |1) sit at opposite poles. The
toric code ground state is then given by

7 . . .
Equivalent conclusions can be reached by choosing any of the other closest product states.
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S T, P ©)

[Wo) =
L€ L€

Similarly, the state at the antipode of | ) is given by

— 1 - 1 -
Ty) = [1— —0) — |—|1). 7)
[Wo) |G||> |G||> (

The Bloch sphere is shown in figure 1.

Let us now mention some general properties of the states built in this way. First, notice that the toric code
ground state |¥y) is actually obtained for angles 6 = 2 arccos(1/./|G|) and ¢ = 0. Therefore, we have a
topologically-ordered pure state at this precise value of the angles. Second, equations (6) and (7) are identical to
those of a Grover rotation in the quantum search algorithm [11]. We will come back to this property later.

Two questions are now in order. First, which type of Bloch sphere are we dealing with, in terms of the
classification in [8]? And second, which states on the sphere have topological order? We can answer both
questions by studying the entanglement of the pure states on the surface of the sphere.

Entanglement on the Bloch sphere

To compute the entanglement properties, we first evaluate the reduced density matrix p4(6, ¢) of a subset A of
the spins defining the toric code Hamiltonian, for arbitrary values of # and ¢. Following [12], let us call B those
spins thatare notin A, and let us define the groups G, g as the subgroups of G consisting of all the products of
star operators acting non-trivially on A, B, i.e.

Gi={geG | g=g, ® I},
Ge={geG | g=L® gl )]

with sizes dy p = |Gy p| respectively. Taking the partial trace over the spins in B and using equations (3)-(6), we
get

pA (0, @) = trp(10, @) (0, B) = lal*04) (04| + [bI>p
L (@*bl,) (0] + b¥al0) (4)), ©)

Jial

where [04) = |0)®™, 1, is the number of spins in A, p(/?) = trg(|Wy) () is the reduced density matrix for the
toric code ground state, and |¢),) = 3- ., 84,104) isanon-normalized state ® The coefficients a and b are defined
as

+

N—

0 ei¢sin(§
a= cos(—) - —
2

Jig =1’

b= an(2) [T w

Moreover, we know from theorem 1 in [12] that

1 4
V== g0 (Oulgsg, = —Pu, (11)
f qec/Grgeay f

where f = |G|/dg, and P, is a projector on a subspace of dimension fdg1 (namely, P, is alinear operator which
satisfies P; = P4, and its image is a vector subspace of dimension fdgl()).

From our expression for p,(6, ¢) in equation (9) we can now compute the 2-Rényi entropy
S, = —log,(tr(p, (6, $)*)). A detailed derivation is provided in the appendix. In the end, we find that

8 We note that, according to equation (8), all operators g € G, are oftheform g = g, ® Ip.

o This result comes from the proof of theorem 1 in [12], which shows (pf) )2 =f"ld, p(:); thus, we deduce P2 = P, for Py £ (fd;l)pf),

and due to normalization, we deduce tr(Py) = fd;l. Therefore, P, is a projector to some vector space of dimension fdA’l.
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|bl*dy | (a*b)* | (ab®)?
0, 2y — |4
tr(p, (0, )% = lal* + 7 + Gl + G

2lal|b)> = 2lalfa*b = 2|al*ab*
f VIGl VIGl
2¥bPb dy 2alblPb*d,
_l’_
fIGI G
2|al*[bl*d,
|Gl

_|_

(12)

from which S, follows. The above expression holds for any size of subsets A and B for a state of the type in
equation (4). Using this equation, one can verify that all states except the state |0) are entangled (using the
entropy of the reduced state); as a result, our Bloch sphere must be in ‘Class 4’ according to the classification in
[8]: only one state is separable, and all the other states, including those mixed states in the interior, are entangled.

Topological order on the Bloch sphere

Our approach to assess topological order is to study the subleading correction to the 2-Rényi entropy of a
contiguous block of spins. For non-chiral two-dimensional topological order, all such possible corrections have
been classified and correspond to a discrete set of values [13].

Thus, we now particularize the scenario to the case of a contiguous block of spins. Following the notation in
[12],wedenoten, = ¥4 + X5 + Xap, where X, pisthe number of star operators acting only on A, B
(respectively), and X 45 is the number of those acting on both A and B. For a block of spins, X 5 is clearly
proportional to the boundary between the block (A) and the rest of the system (B). It is also easy to see that
dyp = 2%5,|G| = 2% Land f~! = dp/|G| = 27"~ DF%s = 272154 Thus, fixing X4 gand 3 5 fully
determines the total number of spins both in the system and in the block. For the sake of simplicity, from now on
we focus on the case of alattice on a torus with k x ksites and ablock (A) with L x L sites; however, we remark
that other more general cases can be analyzed similarly, leading to similar conclusions. One then gets

Sy =12 %5 =k — [2 — 4L, S = 4L, (13)

where we took the convention that the spins sitting at the links of the boundary of a block of sites are considered
as being inside the block.

Combining all the above expressions, we can now compute the 2-Rényi entropy of an arbitrary block of
spins. In particular, we find that the trace of the squared reduced density matrix is

) 0 4 (22k2—4L—1 _ (2L2+1 _ 1)(2k2—L2—4L+1 - 1)
tr(p, (0, #)*) = (SIH(E)) QT 1y

(O (6)@F — HEF-I )
+ 4cos(¢)(sm(5)) cos (E) (2;{271 _ 1)3/2

2 2 2 2_712_ 4
+ 2(sin(9)) (cos(g)) @+ zzk il + (cos(g)) . (14)
2 2 Q-1 1) 2

Let us study equation (14) in some detail in order to find whether topological order exists or not for different
values of # and ¢. First, we take the limit of a large (possibly infinite) lattice, k? > 1.1In this limit we find

o\
tr(p, (0, ) ~ (sin(;)) 274+
2 2
+ Z(Sin(g)) (cos(g)) 2-LP-dL+1
2 2
o\
+ (cos(g)) . (15)

The above equation is independent of ¢, which means that the entropy is almost independent of this angle for
large lattices (and, in fact, completely independent for the infinite-size lattice). Next, we take the limit of a large
block,i.e. L? > L >> 1 (butstillk* > L?).In thislimit we find

0\)* 0\
tr(p, (6, ¢)?) ~ (sin(g)) 274+ (COS(E)) . (16)
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Figure 3. 2-Rényi entropy for ¢ = 0 asa function of 6: (a) k = 20, L = 2;(b) k = 20, L = 4. The position of the maximum (dotted
line) shifts as a function of L.

We can now evaluate this expression for the toric code’s ground state. This state is given by 6 = 6, =
2 arccos(1 / JIG]) with |G| = 2¥~1. Since we are in the limit of an infinite lattice (k* > 1), this means that

4 4
(sin(g)) ~ 1, (cos(g)) ~ 0, (17)
2 2

Sy~ 4L — 1, (18)

and therefore

which is the known result for the 2-Rényi entropy of the toric code [12]. As a common rule, the topological
contribution S, is defined by the scaling S,(L) = oL + S, + O(1/L), where o is some area-law prefactor.
Importantly, in this paper we take this scaling law as our ‘practical definition’ of a topologically-ordered state. As
proven in [14], this is the correct scaling behavior with L for the 2-Rényi entropy at a topological phase in two
spatial dimensions'’. Thus, we obtain the known result S, = —1 for the toric code’s ground state | ).

We now prove that small perturbations in the angle 6 around the toric code’s ground state destroy
topological order. To see this, consider

4 4
(sin(g)) ~1— 2 + ¢, (cos(g)) ~ €, (19)

with e < 1''". Using equation (16) and assuming ¢ < 27* (indeed verysmallif L > 1), one finds (up to O(¢)
terms)
NG

Sy ~4L — 1 + ,
g In2

(20)

which means that any possible constant topological correction would depend on ¢, thus not being in the toric
code universality class'”.

In order to further verify our results, we computed numerically the 2-Rényi entropy of an arbitrary block of
spins, directly using equation (14) and before taking any approximation: see figures 2 and 3 for some examples.
The plots are consistent with our analytical results. First, there is only one separable state in the whole Bloch
sphere (the state |0), for which the azimuthal angle ¢ plays no role). Second, for fixed k and L, we notice that the

195 also [15, 16] for similar scalings of other entanglement measures as well as [ 17] for a detailed discussion on topologically-ordered
states.

HIf(cosa)“ ~ e and (cosa)? + (sina)? = 1,then (sin)? ~ 1 — J€,and therefore (sina)* ~ 1 — 2J€ + €.

2o get this expression, we kept O (+/€) terms, and used also In(1 — 2/€) ~ —2+/€. For finite lattices, a similar result is found for
perturbations in ¢.
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Figure 4. Topological contribution to the 2-Rényi entropy of a block, for a system with k = 4:(a) at ¢ = ¢y = 0 and asa function of 6;
(b)at @ = 6y = 2 arccos(1 / V|Gl ) and as a function of ¢. The topological contribution of the toric code universality class S, = —11is
only recovered for the toric code point. The dependence with the angles gets weaker as k increases.

Rényi entropy attains a maximum as a function of 6, as illustrated in figure 3. This maximum is not related to the
angle 0, at which we have the toric code’s ground state; in fact, it drifts towards the right as L increases. Third, we
can extract the topological contribution S, to the 2-Rényi entropy from the scaling S,(L) = oL + S, 4 O(1/L),
where o is some area-law prefactor. From figure 4 we can see that S, = —1 only for the point corresponding to
the toric code ground state |¥), and that it changes continuously with angles 6 and ¢. These numerical checks
reinforce our result that, on the surface of this Bloch sphere, there seems to be only one topological state,
according to the conventional defining properties of a topological phase.

Formally, it is not impossible that other topological universality classes may be reached continuously.
However, there are several counterarguments for this possibility. For instance, the subleading correction in
equation (20) seems to have a complicated dependence, which is unusual for topological states. Moreover, the
resulting state for any finite e does not seem to have (at least a priori) a gauge symmetry, which is also known to be
adefining property of topological order [18]. We conclude, thus, that formally there seems to be only one
topological state on the surface of this Bloch sphere for O(e) perturbations, which is the toric code ground
state'”. Still, we remark that our O(¢) analysis cannot say anything for tiny neighborhoods around the toric code
point, since for analyzing them we should keep all orders in €, which we did not do. A numerical analysis would
also be of no help here, due to accuracy problems when analyzing tiny infinitesimal environments. The situation
in the interior of the Bloch sphere will be briefly discussed in the conclusions.

Topological order and Grover rotations

We now come back to the expressions in equations (6) and (7). Indeed, these expressions have exactly the form
of a Grover rotation. To be more specific, our setting is equivalent to that of a quantum search algorithm trying
to find the state |0) within an unstructured database of the |G| elements {g|0)*" },c: this is actually a quantum
search within a group G. In our case, the ground state | ) is the equally-weighted superposition of all the
elements in the database. The so-called Grover kernel is defined as

K = 2|¥) (Y| — DO, 21

where Ois the so-called quantum oracle. It is proved in the appendix that by applying K to the state |¥,) a number
oftimes O (/|G| ), one can rotate |W,) approximately into the desired searched state |0). Similarly, by applying
the inverse Grover kernel K~ to the product state |0) a number of times O (,/|G| ), one actually rotates this
product state |0) approximately into the topologically-ordered state |¥). Full details and conclusions are
available in the appendix.

Conclusions and further remarks

In this paper we have shown that two-dimensional non-chiral topological order does not seem to survive some
Bloch-sphere perturbations. This was shown by constructing a Bloch sphere from one of the ground states of
Kitaev’s toric code model together with one of its closest product states. We studied the entanglement of the pure
states on the surface of this sphere and concluded that there is only one product state and that there seems to be,
atleast formally, only one topologically-ordered state. We have also shown that topologically-ordered states may

13 We remind the reader that S, = —1 corresponds to the topological universality class of the toric code model, while close values (even
S, = —0.9999) do not seem to correspond to any non-chiral two-dimensional topological universality class [13]. In other words, a state with
S, = —0.9999 would very probably flow to a trivial product state under coarse-grainings, which is a defining property of a non-topological

state.
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Figure 5. A specific rank-2 mixed state ppiveq presented in its relevant Bloch sphere: this state is very close to the topological state [¥p),
and it is a mixture of the topological state [¥,) and the tensor product state |0) (giving a very high probability to [¥y)). The two pure
states |10 (¢)) and [¢)(—¢)) are chosen such that both are placed in the same x and z coordinates as the mixed state pyixed (although
they differ in the y coordinate), and their 50%—50% mixture is another description of the same mixed state ppixed-

be approximated as states arising from a quantum search with a gauge symmetry, and that such an
approximation may be very good for large systems.

The results in this paper can be generalized in different ways. For instance, it is possible that similar results
could be obtained for more general topological models with other gauge groups [1]; however, proving (or
disproving) such generalizations is not obvious, and we leave it as a topic for future research. It would also be
interesting to study other types of Bloch spheres built from topological states. In this sense, the sphere obtained
from two orthogonal toric code ground states is indeed the class of states analyzed in [ 19], which motivated the
definition of minimally entangled states. It is easy to see that such a Bloch sphere does not contain any product
state, and therefore falls into ‘Class 5’ according to [8]. In fact, as proven in [19], all pure states in such a Bloch
sphere are topologically-ordered, since all of them are valid ground states of the toric code’s Hamiltonian.

Finally, one can ask: what about the interior of the sphere? This question is a bit controversial. Imagine that
one has a classical mixture, with 99.99% of a topological state and 0.01% of a perturbation that formally breaks
topological order (see figure 5). Such state may not be considered as topological (no gauge symmetry, incorrect
topological entropy, flow towards a product state under coarse-grainings, etc.); however, measurements over
this state would produce results compatible with topological order 99.99% of the time. In fact, similar
controversial questions may be asked about a mixture of two (or more) ‘almost-topological’ pure states (e.g. the
two pure states presented in figure 5), where an ‘almost-topological’ pure state is a non-topological state that is
very close to a topological state. Those questions can be relevant because if we carefully choose two such ‘almost-
topological’ pure states, their mixture can be exactly the same mixed state as described above (namely, a mixture
of a topological state with a small non-topological perturbation). Are such states topological in practice, or not?
We believe that clarifying this is quite important because, in actual real-life experiments, one will most probably
never reproduce a topological state with 100% accuracy, but rather a mixture of such state with (perhaps non-
local) perturbations. In our opinion, this is an indication that one may need a more accurate, practical and
relaxed definition of a topological state in such settings.

We may also take a more computer-science-oriented approach, asking whether a trivial circuit [10, 20, 21]
can be used for yielding a specific state, when starting with a trivial (namely, tensor product) state; note thata
trivial circuit is a quantum circuit with constant depth and range. A plausible conjecture is that the mixed state
Pmixed (and potentially also the pure states |1 (¢)) and [t) (—¢))) in figure 5 cannot be obtained using a trivial
circuit, neither from the tensor product state |0) nor from the topological state [Up).

If this conjecture is correct, then there would be (at least) three different regions on the Bloch sphere: a single
non-topological product state, a single topological state, and a continuum of non-topological states that cannot
be obtained from any product state using a trivial circuit (namely, they are ‘non-trivial’ states in the sense defined
by [9, 10]). In addition, there would be at least two phase transitions: a phase transition that singles out the tensor
product state |0) from all its neighboring states on this Bloch sphere, and another phase transition that singles
out the topological state |¥y) from all its neighboring states. Therefore, the Bloch sphere seems to consist almost
only of states that are neither ‘trivial’ states, nor topologically ordered.

The above conjecture seems plausible, because the Grover kernel K (defined in equation (21)), which
corresponds to a rotation on the X—Z plane of the Bloch sphere, seems highly non-trivial to implement (in

7
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particular, it seems very difficult to implement the projector | W) (¥y| using a trivial circuit). Moreover, since all
rotations on the X—Z plane of the Bloch sphere are powers of the Grover kernel K (as noted in the appendix) and
seem hard to implement, we can further conjecture that any two points on the X—Z plane cannot be rotated to
one another using a trivial circuit, which means that there is an infinite number of regions on the Bloch sphere
that are unreachable from each other using trivial circuits. We leave a deep analysis of those conjectures and their
conclusions as open problems for future works. We also leave the analysis of mixed states defined inside the
Bloch sphere for future work.
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Appendix

A.1. Details on the analytical derivation of the 2-Rényi entropy
In this appendix we provide details about the derivation of the 2-Rényi entropy. In equation (12) of the main
paper, the term tr(p, (6, ¢)?)is particularly important since from it we can obtain the exact 2-Rényi entropy of
the system for any size of subsets A and B. Let us now see more precisely how this is derived.

First, one computes p4(6, ¢), the reduced density matrix of a subset. This is defined as
pa (0, @) = tip(|0, @) (0, P|),i.e. the partial trace over B on the projector for state |6, ¢). We notice that we can
write this state as

where a and b are given by equation (10) in the main text, | ¥) is the toric code ground state in equation (3), and
|0) = |0)*" (n is the number of spins). Using this, the projector then reads

10, ¢) (0, 8| = lal*|0) (O] + [b*|Wo) (Yol + a*b|Ty) (O] + b*al0) (ol (23)

We now take the partial trace over B. For the first term in the above equation, this gives trg(|0) (0]) = [0) (04l,
where [04) = |0)®", and 14 is the number of spins in A. For the second term, we obtain exactly the reduced
density matrix for the toric code ground state. This has been computed explicitly in theorem 1 of [12], and gives

d
uﬂ%ﬂ%nzﬁbsf&, (24)
where d, and fare defined as in the main text, and P, is a projector on a subspace of dimension fdgl. For the
third and fourth terms in the partial trace, the calculation is trickier. The key point is to notice that

tr5(10) (Bol) = (0510) (Ty]0) = J|16| 104) (64, (25)
where
l60) = D €4l04) (26)
g€Gy

isanon-normalized quantum state, and |0g) = |0)" (np being the number of spins in B). Thus, at the end of the
day, the reduced density matrix for subsystem B reads
1
P8, ¢) = trp(10, ) (8, @) = lal*|0a) (04l + B p + —

Tiar

(@*blgy) (0a] + b*al04) (B4])s (27)

which is the expression given in the main text.

Having this reduced density matrix, one can compute all bipartite entanglement properties of the state
|0, ¢).1In this paper we focus on the 2-Rényi entropy, since it is simpler to calculate than other measures of
entanglement. For this, the next step is to take the square of p(6, ¢), and then the trace. The square, though
tedious, is not difficult to compute. However, the delicate point in this calculation is the trace. In order to
compute it, the key is to use the following relations:

@
f
(04]04) = 1, (Pulds) = |Gal, (29)

(0)

P = =200, w(p) =1, (28)

8
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(64100) = 1, (0aly) = 1, (30)
(04109[05) = %<0A|¢A> = % (0u1p016,) = %<¢A|¢A> = % (31)

The lastline above follows from the property p©’|0,) = f~!|¢,), which is proven as follows:

1 - 1 1 1
PUI00) = = D7 gal0a) (Oalga8al0n) = = D 84l0a)bg,z, = — 2 84l0a) = —I64), (32)
f 4€676, [ 4€67Gy [ gea, f
g€Gy geGy
where we used the expression
1 ~
P(,?) =7 Z 84104) (0418484 (33)
f ¢€676s
8€Gy

for the toric code’s reduced density matrix, as explicitly derived in [12]. Using all these relations one can arrive
finally (and after simplification) to equation (12) in the main text for the trace of the square of p4(0, ¢), and from
there to the 2-Rényi entropy.

A.2. Topological order and Grover rotations

We now come back to the expressions in equations (6) and (7) in the main text. Indeed, these expressions have
exactly the form of a Grover rotation. To be more specific, our setting is equivalent to that of a quantum search
algorithm trying to find the state |0) within an unstructured database of the |G| elements {g]0)*" },c: this is
actually a quantum search within a group G. In our case, the ground state |¥;) is the equally-weighted
superposition of all the elements in the database. The so-called Grover kernel is defined as

K = 2|¥) (Y| — DO, (34)

where O s the so-called quantum oracle. This oracle is defined such that Olx) = (—1)/ @ |x), where f(x) = 0if
x = 0andf(x) = lif x = 0; thus, it shifts the phase of the searched element |0) only [11]. A well-known result
in quantum computation is that successive applications of the kernel K on the state |¥p) are equivalent (in the
limit of a large |GJ) to the rotation

K™Wy) = sin(zm;_ 19)|()> + cos(2m2+ 19)|T>, (35)

where 6 = 2 arcsin(1 / \/@ )~ 2 / \/ﬁ . Thus, for a number of iterations m = O(\/@ ), one can rotate |¥)
approximately into the desired searched state |0).

Notice that one can also rotate backwards in a similar way: by applying the inverse Grover kernel K ' to the
product state |0) a number of times O (m ), one actually rotates this product state |0) approximately into the
topologically-ordered state | ). This is important because it offers a way to prepare approximate topologically-
ordered states on quantum computers capable of running Grover’s quantum search algorithm with gauge
symmetry (the gauge symmetry is Z, for the toric code). Notice, however, that the exact topological state cannot
usually be prepared using this procedure, because Grover’s iterations involve discrete jumps in the rotation angle;
therefore, in general, one cannot fine-tune the topological state exactly. However, for large systems, one can get
extremely (exponentially!) close to the topological state, which may also be useful in practice.

We further note that all rotations on the X-Z plane of the Bloch sphere (which includes |0), |1), and |¥p)) are
real powers of the Grover kernel K = (2|%) (¥y| — I)O. In other words, the real powers {K¢|e € R}
characterize all the possible rotations from one state to the other on the X-Z plane of the Bloch sphere.

As aremark, notice that the states in Grover’s algorithm for n qubits can also be described in the Bloch sphere
formalism, although in that case the Bloch sphere falls into ‘Class 3’ according to the classification in [8]: namely,
there are two pure product states (not orthogonal to each other) on the Bloch sphere. This is true because in the
usual Grover’s setting, if no other restrictions are applied, there are two product states: the superposition of all
the database elements for # qubits and the searched state. However, in our case, the superposition of all database
elements is not a product state, and it is even a topologically-ordered entangled state.
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