
            

PAPER • OPEN ACCESS

Topological order on the Bloch sphere
To cite this article: Rotem Liss et al 2020 New J. Phys. 22 033023

 

View the article online for updates and enhancements.

This content was downloaded from IP address 79.177.107.122 on 27/03/2020 at 17:37

https://doi.org/10.1088/1367-2630/ab7bf2


New J. Phys. 22 (2020) 033023 https://doi.org/10.1088/1367-2630/ab7bf2

PAPER

Topological order on the Bloch sphere

RotemLiss1, TalMor1 andRománOrús2,3,4,5,6

1 Computer ScienceDepartment, Technion,Haifa, 3200003, Israel
2 Institute of Physics, JohannesGutenbergUniversity, D-55099Mainz, Germany
3 Donostia International Physics Center, PaseoManuel de Lardizabal 4, E-20018 San Sebastián, Spain
4 Ikerbasque Foundation for Science,MariaDiaz deHaro 3, E-48013 Bilbao, Spain
5 Multiverse Computing, Pio Baroja 37, E-20008 San Sebastián, Spain
6 Author towhomany correspondence should be addressed.

E-mail: roman.orus@dipc.org

Keywords:Bloch sphere, topological order, quantum entanglement

Abstract
ABloch sphere is the geometrical representation of an arbitrary two-dimensional Hilbert space.
Possible classes of entanglement and separability for the pure andmixed states on the Bloch sphere
were suggested by [Boyer et al 2017 PRA 95 032 308]. Herewe construct a Bloch sphere for theHilbert
space spanned by one of the ground states of Kitaev’s toric codemodel and one of its closest product
states.We prove that this sphere contains only one separable state, thus belonging to the fourth class
suggested by the said paper.We furthermore study the topological order of the pure states on its
surface and conclude that, according to conventional definitions, only one state (the toric code ground
state) seems to present non-trivial topological order.We conjecture thatmost of the states on this
Bloch sphere are neither ‘trivial’ states (namely, they cannot be generated from a product state using a
trivial circuit)nor topologically ordered. In addition, we show that thewhole setting can be
understood in terms ofGrover rotations with gauge symmetry, akin to the quantum search algorithm.

Introduction

Topological order [1] (TO) is a type of order in quantummatter deeply rooted in quantum entanglement. As
such, TO cannot be detected by local order parameters. Some typical signatures of TO are anyonic excitations,
ground-state topological degeneracy, and indistinguishability of local reduced densitymatrices.Moreover,
topologically-ordered systems form the basis for lattice gauge theories [2] and have been proposed in several
aspects of quantum computation, including the construction of topologically-protected qubits and topological
quantum computation by anyonic braiding [3].

The study of robustness in TOhas been considered frommany angles. It is known that two-dimensional (2d)
TO survives localHamiltonian perturbations at zero temperature [4], which leads to the notion of topological
phases ofmatter. However, 2dTOdoes not survive atfinite temperature [5], at least formally. In practice,
though, there is a trade-off between different physical scales (temperature, size of the system, correlation length),
in such away that TOmay be kept approximately atfinite temperatures under some circumstances. The
questionwhether 2dTO survivesmany-body localization or not has been recently addressed, too [6].

In this paperwe show that 2d TOdoes not seem to survive under certain perturbations that can be
characterized by a Bloch sphere.More specifically, we study a perturbation of one of the ground states of Kitaev’s
toric code [3] by constructing a Bloch sphere with this state and one of its closest product states [7]. Following a
recent characterization of Bloch spheres [8], we prove that, independently of the chosen closest product state,
the spheres constructed this way include only one product state, and probably include only one topological state.
More precisely, our analysis indicates that the topological entanglement entropy changes continuously, and
hints to the fact that the conventional definitions of topological order are not satisfied for such states.We also
conjecture that those non-topological states are not ‘trivial’ states in the sense defined by [9, 10].We
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subsequently show in the appendix that one can conveniently write thewhole setting in terms of Grover
rotationswith gauge symmetry, akin to the quantum search algorithm [11].

Setting

Weconsider the ground states of Kitaev’s toric codemodel [3]. This is amodel of spins-1/2 (qubits) on the links
of a square lattice, withHamiltonian

( )å å= - -H A B , 1TC
s

s
p

p

with starAs and plaquetteBp operators respectively defined as

( )[ ] [ ] s sº º
Î Î

A B . 2s
j s

x
j

p
j p

z
j

In the above equations, s is a star and p is a plaquette on the two-dimensional square lattice, and [ ]sa
j is the Pauli

matrixα at site j. The properties of thismodel arewell-known. In particular, its ground statemanifold has
topological degeneracy: if themodel is defined on aRiemann surface of genus g, then the ground state is g22 -fold
degenerate. The ground state subspace is also a stabilized space ofG, the group of all the possible products of
independent star operators. This group has size ∣ ∣ = -G 2n 1s , where ns is the number of stars in the lattice. The−1
in the exponent is a consequence of the global constraint =  = A Bs s p p . Following [12], for a systemwith
n spins, one of the ground states of themodel can always bewritten as

∣
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nomatter what the topology of the underlying Riemann surface is.
As proven in [7], the closest product states to ∣Y ñ0 are those of the form ∣ ñÄg 0 n, with gäG. For simplicity we

choose here the state ∣¯ ∣ñ º ñÄ0 0 n7. This state, togetherwith ∣Y ñ0 , spans a two-dimensionalHilbert space defining
a Bloch sphere. An arbitrary pure state in this space can bewritten as
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where θä[0,π] andfä[0, 2π], and the state ∣ ¯ñ1 is defined as
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This characterizes the surface of a Bloch sphere, as shown infigure 1, where ∣¯ñ0 and ∣ ¯ñ1 sit at opposite poles. The
toric code ground state is then given by

Figure 1.Bloch sphere defined by the toric code ground state ∣Y ñ0 and one of its closest product states ∣¯ ∣ñ = ñÄ0 0 n, as specified in the
text. The states ∣Y ñ0 and ∣ ¯ñ1 are the respective antipodal states. The different states on the surface of the sphere are characterized by
angles θ andf. The interior corresponds tomixed states formed by convex combinations of the pure states on the surface.

7
Equivalent conclusions can be reached by choosing any of the other closest product states.

2

New J. Phys. 22 (2020) 033023 R Liss et al



∣
∣ ∣

∣¯
∣ ∣

∣ ¯ ( )Y ñ = ñ + - ñ
G G

1
0 1

1
1 . 60

Similarly, the state at the antipode of ∣Y ñ0 is given by
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The Bloch sphere is shown infigure 1.
Let us nowmention some general properties of the states built in this way. First, notice that the toric code

ground state ∣Y ñ0 is actually obtained for angles ( ∣ ∣ )q = G2 arccos 10 andf0=0. Therefore, we have a
topologically-ordered pure state at this precise value of the angles. Second, equations (6) and (7) are identical to
those of aGrover rotation in the quantum search algorithm [11].Wewill come back to this property later.

Two questions are now in order. First, which type of Bloch sphere arewe dealingwith, in terms of the
classification in [8]? And second, which states on the sphere have topological order?We can answer both
questions by studying the entanglement of the pure states on the surface of the sphere.

Entanglement on theBloch sphere

To compute the entanglement properties, wefirst evaluate the reduced densitymatrix ρA(θ,f) of a subsetA of
the spins defining the toric codeHamiltonian, for arbitrary values of θ andf. Following [12], let us callB those
spins that are not inA, and let us define the groupsGA, B as the subgroups ofG consisting of all the products of
star operators acting non-trivially onA,B, i.e.

{ ∣ }
{ ∣ } ( )
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G g G g g

,

, 8
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with sizes ∣ ∣=d GA B A B, , respectively. Taking the partial trace over the spins inB and using equations (3)–(6), we
get
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where ∣ ∣ñ º ñÄ0 0A
nA, nA is the number of spins inA, (∣ ∣)( )r = Y ñáYtrA B

0
0 0 is the reduced densitymatrix for the

toric code ground state, and ∣ ∣f ñ = å ñÎ g 0A g G A AA
is a non-normalized state8 The coefficients a and b are defined

as
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Moreover, we know from theorem 1 in [12] that
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where ∣ ∣=f G dB, andPA is a projector on a subspace of dimension -fd
A

1 (namely, PA is a linear operator which

satisfies =P PA A
2 , and its image is a vector subspace of dimension -fd

A
19).

Fromour expression for ρA(θ,f) in equation (9)we can now compute the 2-Rényi entropy
( ( ( ) ))r q fº -S log tr ,A2 2

2 . A detailed derivation is provided in the appendix. In the end, we find that

8
Wenote that, according to equation (8), all operators gäGA are of the form = Ä g gA B.

9
This result comes from the proof of theorem 1 in [12], which shows ( )( ) ( )r r= -f d ;A A A

0 2 1 0 thus, we deduce =P PA A
2 for ( ) ( ) r-P fdA A A

1 0 ,
and due to normalization, we deduce ( ) = -P fdtr A A

1. Therefore,PA is a projector to some vector space of dimension -fdA
1.
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fromwhich S2 follows. The above expression holds for any size of subsetsA andB for a state of the type in
equation (4). Using this equation, one can verify that all states except the state ∣¯ñ0 are entangled (using the
entropy of the reduced state); as a result, our Bloch spheremust be in ‘Class 4’ according to the classification in
[8]: only one state is separable, and all the other states, including thosemixed states in the interior, are entangled.

Topological order on the Bloch sphere

Our approach to assess topological order is to study the subleading correction to the 2-Rényi entropy of a
contiguous block of spins. For non-chiral two-dimensional topological order, all such possible corrections have
been classified and correspond to a discrete set of values [13].

Thus, we nowparticularize the scenario to the case of a contiguous block of spins. Following the notation in
[12], we denote ns=ΣA+ΣB+ΣAB, whereΣA, B is the number of star operators acting only onA,B
(respectively), andΣAB is the number of those acting on both A andB. For a block of spins,ΣAB is clearly
proportional to the boundary between the block (A) and the rest of the system (B). It is also easy to see that

= Sd 2A B, A B, , ∣ ∣ = -G 2n 1s , and ∣ ∣ ( )= = =- - - +S -S + -Sf d G 2 2B
n1 1 1s B AB A. Thus,fixingΣA, B andΣAB fully

determines the total number of spins both in the system and in the block. For the sake of simplicity, fromnowon
we focus on the case of a lattice on a torus with k×k sites and a block (A)with L×L sites; however, we remark
that othermore general cases can be analyzed similarly, leading to similar conclusions. One then gets

( )S = S = - - S =L k L L L, 4 , 4 , 13A B AB
2 2 2

wherewe took the convention that the spins sitting at the links of the boundary of a block of sites are considered
as being inside the block.

Combining all the above expressions, we can now compute the 2-Rényi entropy of an arbitrary block of
spins. In particular, wefind that the trace of the squared reduced densitymatrix is
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Let us study equation (14) in some detail in order tofindwhether topological order exists or not for different
values of θ andf. First, we take the limit of a large (possibly infinite) lattice, k2?1. In this limit we find
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The above equation is independent off, whichmeans that the entropy is almost independent of this angle for
large lattices (and, in fact, completely independent for the infinite-size lattice). Next, we take the limit of a large
block, i.e. L2?L?1 (but still k2?L2). In this limit wefind
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Wecannow evaluate this expression for the toric code’s ground state. This state is given by q q= 0 =
( ∣ ∣ )G2 arccos 1 with ∣ ∣ = -G 2k 12

. Sincewe are in the limit of an infinite lattice (k2?1), thismeans that
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2

0, 17
4 4

and therefore

( )» -S L4 1, 182

which is the known result for the 2-Rényi entropy of the toric code [12]. As a common rule, the topological
contribution Sγ is defined by the scaling S2(L)=α L+Sγ+O(1/L), whereα is some area-law prefactor.
Importantly, in this paper we take this scaling law as our ‘practical definition’ of a topologically-ordered state. As
proven in [14], this is the correct scaling behaviorwith L for the 2-Rényi entropy at a topological phase in two
spatial dimensions10. Thus, we obtain the known result Sγ=−1 for the toric code’s ground state ∣Y ñ0 .

We nowprove that small perturbations in the angle θ around the toric code’s ground state destroy
topological order. To see this, consider
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with ò=111. Using equation (16) and assuming ò=2−4L (indeed very small if L?1), onefinds (up toO(ò)
terms)

( )» - +


S L4 1
2

ln 2
, 202

whichmeans that any possible constant topological correctionwould depend on ò, thus not being in the toric
code universality class12.

In order to further verify our results, we computed numerically the 2-Rényi entropy of an arbitrary block of
spins, directly using equation (14) and before taking any approximation: see figures 2 and 3 for some examples.
The plots are consistent with our analytical results. First, there is only one separable state in thewhole Bloch
sphere (the state ∣¯ñ0 , for which the azimuthal anglef plays no role). Second, forfixed k and L, we notice that the

Figure 2. 2-Rényi entropy in the θ–f plane: (a) k=20, L=1; (b) k=20, L=10. The dependence withf is extremely weak.

Figure 3. 2-Rényi entropy forf=0 as a function of θ: (a) k=20, L=2; (b) k=20, L=4. The position of themaximum (dotted
line) shifts as a function of L.

10
See also [15, 16] for similar scalings of other entanglementmeasures aswell as [17] for a detailed discussion on topologically-ordered

states.
11

If ( )a » cos 4 and ( ) ( )a a+ =cos sin 12 2 , then ( )a » - sin 12 , and therefore ( )a » - + sin 1 24 .
12

To get this expression, we kept ( )O terms, and used also ( )- » - ln 1 2 2 . Forfinite lattices, a similar result is found for
perturbations inf.
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Rényi entropy attains amaximumas a function of θ, as illustrated infigure 3. Thismaximum is not related to the
angle θ0 at whichwe have the toric code’s ground state; in fact, it drifts towards the right as L increases. Third, we
can extract the topological contribution Sγ to the 2-Rényi entropy from the scaling S2(L)=α L+Sγ+O(1/L),
whereα is some area-law prefactor. From figure 4we can see that Sγ=−1 only for the point corresponding to
the toric code ground state ∣Y ñ0 , and that it changes continuously with angles θ andf. These numerical checks
reinforce our result that, on the surface of this Bloch sphere, there seems to be only one topological state,
according to the conventional defining properties of a topological phase.

Formally, it is not impossible that other topological universality classesmay be reached continuously.
However, there are several counterarguments for this possibility. For instance, the subleading correction in
equation (20) seems to have a complicated dependence, which is unusual for topological states.Moreover, the
resulting state for any finite ò does not seem to have (at least a priori) a gauge symmetry, which is also known to be
a defining property of topological order [18].We conclude, thus, that formally there seems to be only one
topological state on the surface of this Bloch sphere forO(ò) perturbations, which is the toric code ground
state13. Still, we remark that ourO(ò) analysis cannot say anything for tiny neighborhoods around the toric code
point, since for analyzing themwe should keep all orders in ò, whichwe did not do. A numerical analysis would
also be of no help here, due to accuracy problemswhen analyzing tiny infinitesimal environments. The situation
in the interior of the Bloch sphere will be briefly discussed in the conclusions.

Topological order andGrover rotations

Wenow come back to the expressions in equations (6) and (7). Indeed, these expressions have exactly the form
of aGrover rotation. To bemore specific, our setting is equivalent to that of a quantum search algorithm trying
tofind the state ∣¯ñ0 within an unstructured database of the ∣ ∣G elements { ∣ }ñÄ Îg 0 n

g G: this is actually a quantum
searchwithin a groupG. In our case, the ground state ∣Y ñ0 is the equally-weighted superposition of all the
elements in the database. The so-calledGrover kernel is defined as

( ∣ ∣ ) ( )º Y ñáY - K O2 , 210 0

whereO is the so-called quantum oracle. It is proved in the appendix that by applyingK to the state ∣Y ñ0 a number
of times ( ∣ ∣ )O G , one can rotate ∣Y ñ0 approximately into the desired searched state ∣¯ñ0 . Similarly, by applying

the inverseGrover kernelK−1 to the product state ∣¯ñ0 a number of times ( ∣ ∣ )O G , one actually rotates this
product state ∣¯ñ0 approximately into the topologically-ordered state ∣Y ñ0 . Full details and conclusions are
available in the appendix.

Conclusions and further remarks

In this paper we have shown that two-dimensional non-chiral topological order does not seem to survive some
Bloch-sphere perturbations. This was shownby constructing a Bloch sphere fromone of the ground states of
Kitaev’s toric codemodel together with one of its closest product states.We studied the entanglement of the pure
states on the surface of this sphere and concluded that there is only one product state and that there seems to be,
at least formally, only one topologically-ordered state.We have also shown that topologically-ordered statesmay

Figure 4.Topological contribution to the 2-Rényi entropy of a block, for a systemwith k=4: (a) atf=f0=0 and as a function of θ;
(b) at ( ∣ ∣ )q q= = G2 arccos 10 and as a function off. The topological contribution of the toric code universality class Sγ=−1 is
only recovered for the toric code point. The dependence with the angles gets weaker as k increases.

13
We remind the reader that Sγ=−1 corresponds to the topological universality class of the toric codemodel, while close values (even

Sγ=−0.9999) do not seem to correspond to any non-chiral two-dimensional topological universality class [13]. In otherwords, a state with
Sγ=−0.9999would very probably flow to a trivial product state under coarse-grainings, which is a defining property of a non-topological
state.

6

New J. Phys. 22 (2020) 033023 R Liss et al



be approximated as states arising froma quantum searchwith a gauge symmetry, and that such an
approximationmay be very good for large systems.

The results in this paper can be generalized in different ways. For instance, it is possible that similar results
could be obtained formore general topologicalmodels with other gauge groups [1]; however, proving (or
disproving) such generalizations is not obvious, andwe leave it as a topic for future research. It would also be
interesting to study other types of Bloch spheres built from topological states. In this sense, the sphere obtained
from two orthogonal toric code ground states is indeed the class of states analyzed in [19], whichmotivated the
definition ofminimally entangled states. It is easy to see that such a Bloch sphere does not contain any product
state, and therefore falls into ‘Class 5’ according to [8]. In fact, as proven in [19], all pure states in such a Bloch
sphere are topologically-ordered, since all of them are valid ground states of the toric code’sHamiltonian.

Finally, one can ask: what about the interior of the sphere? This question is a bit controversial. Imagine that
one has a classicalmixture, with 99.99%of a topological state and 0.01%of a perturbation that formally breaks
topological order (seefigure 5). Such statemay not be considered as topological (no gauge symmetry, incorrect
topological entropy, flow towards a product state under coarse-grainings, etc.); however,measurements over
this state would produce results compatible with topological order 99.99%of the time. In fact, similar
controversial questionsmay be asked about amixture of two (ormore) ‘almost-topological’ pure states (e.g. the
two pure states presented infigure 5), where an ‘almost-topological’ pure state is a non-topological state that is
very close to a topological state. Those questions can be relevant because if we carefully choose two such ‘almost-
topological’ pure states, theirmixture can be exactly the samemixed state as described above (namely, amixture
of a topological state with a small non-topological perturbation). Are such states topological in practice, or not?
We believe that clarifying this is quite important because, in actual real-life experiments, onewillmost probably
never reproduce a topological state with 100%accuracy, but rather amixture of such state with (perhaps non-
local)perturbations. In our opinion, this is an indication that onemay need amore accurate, practical and
relaxed definition of a topological state in such settings.

Wemay also take amore computer-science-oriented approach, askingwhether a trivial circuit [10, 20, 21]
can be used for yielding a specific state, when starting with a trivial (namely, tensor product) state; note that a
trivial circuit is a quantum circuit with constant depth and range. A plausible conjecture is that themixed state
ρmixed (and potentially also the pure states ∣ ( )y f ñand ∣ ( )y f- ñ) infigure 5 cannot be obtained using a trivial
circuit, neither from the tensor product state ∣ ñ0 nor from the topological state ∣Y ñ0 .

If this conjecture is correct, then therewould be (at least) three different regions on the Bloch sphere: a single
non-topological product state, a single topological state, and a continuumof non-topological states that cannot
be obtained from any product state using a trivial circuit (namely, they are ‘non-trivial’ states in the sense defined
by [9, 10]). In addition, therewould be at least two phase transitions: a phase transition that singles out the tensor
product state ∣ ñ0 from all its neighboring states on this Bloch sphere, and another phase transition that singles
out the topological state ∣Y ñ0 from all its neighboring states. Therefore, the Bloch sphere seems to consist almost
only of states that are neither ‘trivial’ states, nor topologically ordered.

The above conjecture seems plausible, because theGrover kernelK (defined in equation (21)), which
corresponds to a rotation on theX–Z plane of the Bloch sphere, seems highly non-trivial to implement (in

Figure 5.A specific rank-2mixed state ρmixed presented in its relevant Bloch sphere: this state is very close to the topological state ∣Y ñ0 ,
and it is amixture of the topological state ∣Y ñ0 and the tensor product state ∣ ñ0 (giving a very high probability to ∣Y ñ0 ). The two pure
states ∣ ( )y f ñand ∣ ( )y f- ñare chosen such that both are placed in the same x and z coordinates as themixed state ρmixed (although
they differ in the y coordinate), and their 50%–50%mixture is another description of the samemixed state ρmixed.

7

New J. Phys. 22 (2020) 033023 R Liss et al



particular, it seems very difficult to implement the projector ∣ ∣Y ñáY0 0 using a trivial circuit).Moreover, since all
rotations on theX–Z plane of the Bloch sphere are powers of theGrover kernelK (as noted in the appendix) and
seemhard to implement, we can further conjecture that any two points on theX–Z plane cannot be rotated to
one another using a trivial circuit, whichmeans that there is an infinite number of regions on the Bloch sphere
that are unreachable from each other using trivial circuits.We leave a deep analysis of those conjectures and their
conclusions as open problems for futureworks.We also leave the analysis ofmixed states defined inside the
Bloch sphere for future work.
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Appendix

A.1. Details on the analytical derivation of the 2-Rényi entropy
In this appendixwe provide details about the derivation of the 2-Rényi entropy. In equation (12) of themain
paper, the term ( ( ) )r q ftr ,A

2 is particularly important since from it we can obtain the exact 2-Rényi entropy of
the system for any size of subsetsA andB. Let us now seemore precisely how this is derived.

First, one computes ρA(θ,f), the reduced densitymatrix of a subset. This is defined as
( ) (∣ ∣)r q f q f q fº ñá, tr , ,A B , i.e. the partial trace overB on the projector for state ∣q fñ, .We notice that we can

write this state as

∣ ∣¯ ∣ ( )q fñ = ñ + Y ña b, 0 , 220

where a and b are given by equation (10) in themain text, ∣Y ñ0 is the toric code ground state in equation (3), and
∣¯ ∣ñ º ñÄ0 0 n (n is the number of spins). Using this, the projector then reads

∣ ∣ ∣ ∣ ∣¯ ¯∣ ∣ ∣ ∣ ∣ ∣ ¯∣ ∣¯ ∣ ( )q f q fñá = ñá + Y ñáY + Y ñá + ñáYa b a b b a, , 0 0 0 0 . 232 2
0 0 0 0* *

Wenow take the partial trace overB. For thefirst term in the above equation, this gives (∣¯ ¯∣) ∣ ∣ñá = ñátr 0 0 0 0B A A ,
where ∣ ∣ñ º ñÄ0 0A

nA, and nA is the number of spins inA. For the second term,we obtain exactly the reduced
densitymatrix for the toric code ground state. This has been computed explicitly in theorem1 of [12], and gives

(∣ ∣) ( )( )rY ñáY = =
d

f
Ptr , 24B A

A
A0 0

0

where dA and f are defined as in themain text, and PA is a projector on a subspace of dimension -fd
A

1. For the
third and fourth terms in the partial trace, the calculation is trickier. The key point is to notice that

(∣¯ ∣) ∣¯ ∣
∣ ∣

∣ ∣ ( )fñáY = á ñáY ñ = ñá
G

tr 0 0 0 0
1

0 , 25B B B A A0 0

where

∣ ∣ ( )åf ñ º ñ
Î

g 0 26A
g G

A A

A

is a non-normalized quantum state, and ∣ ∣ñ º ñ0 0B
nB (nB being the number of spins inB). Thus, at the end of the

day, the reduced densitymatrix for subsystemB reads

( ) (∣ ∣) ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣

( ∣ ∣ ∣ ∣) ( )( )r q f q f q f r f fº ñá = ñá + + ñá + ñáa b
G

a b b a, tr , , 0 0
1

0 0 , 27A B A A A A A A A
2 2 0 * *

which is the expression given in themain text.
Having this reduced densitymatrix, one can compute all bipartite entanglement properties of the state

∣q fñ, . In this paperwe focus on the 2-Rényi entropy, since it is simpler to calculate than othermeasures of
entanglement. For this, the next step is to take the square of ρA(θ,f), and then the trace. The square, though
tedious, is not difficult to compute. However, the delicate point in this calculation is the trace. In order to
compute it, the key is to use the following relations:

( ) ( ) ( )( ) ( ) ( )r r r= =
d

f
, tr 1, 28A

A
A A

0 2 0 0

∣ ∣ ∣ ∣ ( )f fá ñ = á ñ = G0 0 1, , 29A A A A A
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∣ ∣ ( )f fá ñ = á ñ =0 1, 0 1, 30A A A A

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )( ) ( )r f r f f fá ñ = á ñ = á ñ = á ñ =
f f f

G

f
0 0

1
0

1
, 0

1
. 31A A A A A A A A A A

A0 0

The last line above follows from the property ∣ ∣( )r fñ = ñ-f0A A A
0 1 , which is proven as follows:

∣ ∣ ∣ ˜ ∣ ∣ ∣ ∣ ( )( )

˜ ˜

˜å å år d fñ = ñá ñ = ñ = ñ = ñ
Î
Î

Î
Î

Îf
g g g

f
g

f
g

f
0

1
0 0 0

1
0

1
0

1
, 32A A

g G G
g G

A A A A A A
g G G

g G

A A g g
g G

A A A
0

,
B

A

B

A

A A

A

wherewe used the expression

∣ ∣ ˜ ( )( )

˜

år = ñá
Î
Î

f
g g g

1
0 0 33A

g G G
g G

A A A A A
0

B

A

for the toric code’s reduced densitymatrix, as explicitly derived in [12]. Using all these relations one can arrive
finally (and after simplification) to equation (12) in themain text for the trace of the square of ρA(θ,f), and from
there to the 2-Rényi entropy.

A.2. Topological order andGrover rotations
Wenow come back to the expressions in equations (6) and (7) in themain text. Indeed, these expressions have
exactly the formof aGrover rotation. To bemore specific, our setting is equivalent to that of a quantum search
algorithm trying tofind the state ∣¯ñ0 within an unstructured database of the ∣ ∣G elements { ∣ }ñÄ Îg 0 n

g G: this is
actually a quantum searchwithin a groupG. In our case, the ground state ∣Y ñ0 is the equally-weighted
superposition of all the elements in the database. The so-calledGrover kernel is defined as

( ∣ ∣ ) ( )º Y ñáY - K O2 , 340 0

whereO is the so-called quantum oracle. This oracle is defined such that ∣ ( ) ∣( )ñ = - ñO x x1 f x , where f (x)=0 if
¯¹x 0 and f (x)=1 if ¯=x 0; thus, it shifts the phase of the searched element ∣¯ñ0 only [11]. Awell-known result

in quantum computation is that successive applications of the kernelK on the state ∣Y ñ0 are equivalent (in the
limit of a large ∣ ∣G ) to the rotation

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∣ ˜ ∣¯ ˜ ∣¯ ( )q qY ñ =

+
ñ +

+
ñK

m m
sin

2 1

2
0 cos

2 1

2
1 , 35m

0

where ˜ ( ∣ ∣ ) ∣ ∣q º »G G2 arcsin 1 2 . Thus, for a number of iterations ( ∣ ∣ )=m O G , one can rotate ∣Y ñ0
approximately into the desired searched state ∣¯ñ0 .

Notice that one can also rotate backwards in a similar way: by applying the inverse Grover kernelK−1 to the
product state ∣¯ñ0 a number of times ( ∣ ∣ )O G , one actually rotates this product state ∣¯ñ0 approximately into the
topologically-ordered state ∣Y ñ0 . This is important because it offers away to prepare approximate topologically-
ordered states on quantum computers capable of runningGrover’s quantum search algorithmwith gauge
symmetry (the gauge symmetry is 2 for the toric code). Notice, however, that the exact topological state cannot
usually be prepared using this procedure, becauseGrover’s iterations involve discrete jumps in the rotation angle;
therefore, in general, one cannot fine-tune the topological state exactly. However, for large systems, one can get
extremely (exponentially!) close to the topological state, whichmay also be useful in practice.

We further note that all rotations on theX-Z plane of the Bloch sphere (which includes ∣¯ñ0 , ∣ ¯ñ1 , and ∣Y ñ0 ) are
real powers of theGrover kernel ( ∣ ∣ )º Y ñáY - K O2 0 0 . In otherwords, the real powers { ∣ }Î K
characterize all the possible rotations fromone state to the other on theX-Z plane of the Bloch sphere.

As a remark, notice that the states inGrover’s algorithm for n qubits can also be described in the Bloch sphere
formalism, although in that case the Bloch sphere falls into ‘Class 3’ according to the classification in [8]: namely,
there are two pure product states (not orthogonal to each other) on the Bloch sphere. This is true because in the
usual Grover’s setting, if no other restrictions are applied, there are two product states: the superposition of all
the database elements for n qubits and the searched state. However, in our case, the superposition of all database
elements is not a product state, and it is even a topologically-ordered entangled state.
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