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Abstract

The counter-intuitive features of Quantum Mechanics make it possible to solve problems
and perform tasks that are beyond the abilities of classical computers and classical
communication devices. The area of quantum information processing studies how
representing information by quantum states can help achieving such improvements.

In this research, we use basic notions of quantum information (mainly entanglement,
Bloch sphere, and geometrical distances between quantum states) for analyzing relations
of quantum states to each other and quantum cryptographic protocols.

Entanglement is an important feature of quantum states. Intuitively (and, partly,
inaccurately), entanglement represents quantum (non-classical) correlations between
several different quantum systems. Entanglement is one of the most important quantum
phenomena, and it has many uses in quantum information, quantum communication,
and quantum computing.

Some quantum states can be geometrically represented by the Bloch sphere: the
unit sphere in the three-dimensional Euclidean space. The “standard” quantum states,
to which the laws of Quantum Mechanics directly apply, are called pure states. Other
states are the mized states: probability distributions (“mixtures”) of several pure states.
The points on the Bloch sphere are the pure states, and those inside the Bloch sphere
are the mixed states. This geometrical representation is useful and intuitive for many
purposes.

We provide a geometrical analysis of entanglement for all the quantum mixed states
of rank 2 (all the mixtures of exactly two pure states): for any such state (in any
dimension), we define a generalized Bloch sphere by using the two pure states, and we
analyze this state and its neighbor states inside this Bloch sphere. We look at the set of
non-entangled states (“separable states”) in the Bloch sphere and characterize it into
exactly five possible classes. We give examples for each class and prove that there are
no other classes. In addition, we suggest possible definitions of “entanglement measures”
by using the “trace distance” from the nearest separable state.

Many types of distances between quantum states can be defined. One of the most
useful distances is the trace distance, which bounds the “distinguishability” between
the states. The trace distance is very useful in quantum information and quantum
cryptography, and it also has a simple geometrical interpretation: it is half of the

Euclidean distance between the states in the Bloch sphere.



Quantum key distribution (QKD) protocols make it possible for two participators to
achieve the classically-impossible task of generating a secret random shared key even
if their adversary is computationally unlimited. Several important QKD protocols,
including the first protocol of Bennett and Brassard (BB84), have their unconditional
security proved against adversaries performing the most general attacks in a theoretical
(idealized) setting. We discuss a slightly different protocol, named “BB84-INFO-z”,
and prove it secure against a broad class of attacks (the collective attacks). Moreover,
we make use of the “trace distance” for making our security proof more “composable”
than similar security proofs for BB84: namely, for making a step towards proving
that the secret key remains secret even when the two participators actually use it for

cryptographic purposes.



Chapter 1
Introduction

The area of quantum information processing (QIP) uses the laws of quantum physics to
perform tasks that are classically impossible (or hard).

In this chapter we discuss some of the basic notions of quantum information, that are
needed for the later chapters. See [NC00, Gru99, RP00, GMDO02] for more background
and explanations regarding QIP.

1.1 Quantum States

In QIP, information is represented by quantum states. A quantum state is the state of a
specific physical system.

A Hilbert space is a vector space over the field C (the complex numbers) with an
inner product, that satisfies the “completeness” property (whose exact definition can be
found in standard textbooks, and that is satisfied by all finite-dimensional inner product
spaces). A quantum pure state is represented by |¢), that is a normalized column vector
(namely, a column vector of norm 1) in the Hilbert space. In other words, the Hilbert
space is the set of all the possible quantum pure states of a system (including the
non-normalized states).

As an important example, the qubit Hilbert space is Ho = Span{|0), [1)}, with |0)
and |1) being two orthonormal vectors (namely, they are normalized and their inner
product is 0). Two other important states in Hs are |+) = % and |—) £ %.
The most general qubit pure state is |¢/) = a|0) + S|1), with a, 8 € C and |a|?+|3> = 1

(normalization condition). The qubit states are sometimes denoted by their vector

representations in the {|0),|1)} basis: |0) = ( 1 ), 1) = ( 0 >, 4+) = ( 1 >7

0 1
|—>=\}§<_11>,and|w):<;>.

Note that multiplying a pure state |¢)) by any global phase ¢® has no physical

-

significance. In other words, two pure states that differ only by a global multiplicative

phase €!® are the same for all intents and purposes.



The notation [¢) (the column vector) is called ket. A related notation, (1|, is called
bra, and is a row vector. It is defined by (1| £ [|¢)]T (namely, the bra is the conjugate
transpose of the ket). For example, if |¢) = a|0) + B|1), then (| = o* (0| + *(1| (where
a* is the complex conjugate of «); and, in vector notations, (¢| = ( o* p* ).

Given an orthonormal basis {|11), [12),...,|¥n)}, the inner product of two pure

states [4) = Sy agly) and [¢) = X0, Bjluy) is (Wl6) = X0, a38;. The norm of

) is I[N = VWI) = /30T ey

1.1.1 Quantum Measurements

Quantum physics allows us to measure a quantum state [¢)) with respect to any
orthonormal basis {|11),|¥2),...,|¢n)}. The possible measurement outcomes are all
the states “y” of this orthonormal basis; the probability of getting the outcome “i”
(corresponding to the quantum state 1)) is pr = |(1x|t)|?. Note that > p_, pr =
(¥|) = 1. Also note that the result “i;” is a classical indicator that can be read and
used; we have not discussed the resulting quantum state after the measurement, but
we should note that the quantum state may be ruined (or change its state) by the
measurement operation itself.

For example, if the state [¢)) = a|0)+/|1) is measured with respect to the orthonormal
basis {|0),[1)}, then the result “0” is obtained with probability |[(0]1)|? = |«|?, and the
result “1” is obtained with probability |(1|¢)|? = |32

More general types of measurements exist (see, e.g., in [NCO00]), but they can all be

reduced to the set of quantum operations described in Section 1.5.

1.1.2 Unitary Operators

Quantum physics allows us to apply any unitary operator U : H — H on a quantum
state in the Hilbert space H.

Unitary operators are linear operators (namely, Ula|y) 4+ 8|¢)] = aU|y) + BU|¢))
that satisfy UT = U~1. They preserve inner products and norms.

As an important example, the Hadamard operator on the qubit space is defined by

1 1
H= % T namely, H|0) = |+) and H|1) = |—). It also satisfies H|+) = |0)
and H|—) =|1).

1.2 Bipartite and Multipartite Hilbert Spaces

1.2.1 Tensor Products of Hilbert Spaces

Suppose that we are given two physical systems, A and B, and that we want to represent
the compound system AB (that is comprised of the two subsystems A and B) as a
physical system. Suppose that the quantum state of subsystem A is represented by a



vector in the Hilbert space H 4 and that the quantum state of subsystem B is represented
by a vector in the Hilbert space Hp.

In this case, the quantum state of the compound (bipartite) system AB is represented
by a vector in the tensor product Hilbert space H4 ® Hp. An orthonormal basis for
this Hilbert space can be obtained by taking the product of two orthonormal bases (of
H4 and of Hp): namely, if {|1)1) 4, |¥2) 4, ..., [r)a} is an orthonormal basis of H 4 and
{|é1)B, |2)B, - - -, |0dn)B} is an orthonormal basis of Hp, then an orthonormal basis of
Ha@Hpis {|[Yi)a®|dj)p|1<i<k1<j<n}

As an important example, if A and B are both qubit systems (namely, H4 and
‘Hp are both He = Span{|0), |1)}), then the compound two-qubit system is represented
by He ® Ha = Span{|0) ® |0),]0) ® |1),|1) ® |0),]|1) ® |[1)}. A shorter notation is
Ho ® Ha = Span{|00), |01), |10),|11)}.

The tensor product of three or more Hilbert spaces (giving a multipartite Hilbert
space) is defined in a similar way. For example, Ho ® Ho ® Hz (a tripartite Hilbert space
that is the three-qubit space) is Span{|000), |001), |010), |011), [100), |101),|110),|111)}.

1.2.2 Tensor Products of Vectors

Given two Hilbert spaces, H4 with orthonormal basis {|¢1)4, [2)4,. .., |k)a} and
Hp with orthonormal basis {|¢1)5, |¢2)5,...,|¢n)5}, and given two vectors |[¢)4 2

25:1 aj|j)a € Ha and |¢) B £ Z?Zl Biloj)B € Hp, the tensor product vector |1) 4 ®
) € Ha ® Hp (or, using a short notation, |¢)) 4|¢)p) is defined as

kK n
V)ale)s =D D aifilvi)ales) . (1.1)

i=1 j=1

For example, given |1))4 = a|0)4 + B|1)a € Ho and |¢p)p = ¥|0)p + J|1)p € Ha, the
tensor product vector |¢) 4|¢)p € Ha ® Ho is

[9)al9) B = av[00) ap + ad|01) ap + B7(10) ap + B0[11) Ap- (1.2)

An example is

04+ 1)a) g [1a ey

= %HOO>AB —[01)a + [10)a — [11) aB].
(1.3)

This definition is easily generalized to tensor products of three (or more) vectors:

[+—)aB = [

for example,

+0-)ape = [ 2t s ] 100 @ [W}
%[\ooomc 1001 ape + [100)anc — 101 apcl.  (14)



1.2.3 Tensor Products of Operators

Given two linear operators, U operating on the Hilbert space H 4 and V operating on
the Hilbert space H g, the linear operator U ® V' operates on the Hilbert space H4 @ Hp

and is defined as follows:

UeV)([P)a®ld)p) = (Ulpa)) ® (Vigs)) (1.5)

(It extends by linearity to vectors that are not tensor products, such as W.)

For example, the tensor product of the Hadamard operator H with itself, denoted
H ® H or H®?, operates as follows:

H®?00) ap = |++)aB (1.6)
H®|01) a5 = [+=)an (1.7)
H®[10)ap = |—+) a5 (1.8)
H®*|11)ap = |——)anB (1.9)

This definition is easily generalized to tensor products of three (or more) operators.

1.3 Quantum Entanglement of Pure States

A tensor product pure state (or separable pure state) in a bipartite Hilbert space
Ha @ Hp is a tensor product of two states: in other words, it is of the form |¢) 4 ® |p)p
with ()4 € Ha and |¢)p € Hp.

Any other state in Hy ® Hp (namely, any state that cannot be presented as
|Y)a ® |¢)B) is called entangled.

For example (two-qubit states): |[+—)ap is a product state, while W

is
an entangled state.
Four important entangled two-qubit states (that form together an orthonormal basis

of Ha ® Ha, called Bell basis or BMR basis) are:

[00)ap £ [11)ap

|®s)ap = 7 (1.10)
W) ap = |01>AB\2|10>AB (1.11)

1.4 Quantum Mixed States

A quantum mized state is a probability distribution over several pure states: namely, it
is a set {(|1j),q;)}; of pairs, each pair consisting of a pure state |¢;) and of a probability
gj (with 0 < ¢j <1 and Zj q; = 1), such that the pure state |¢;) has a probability g;.

Unlike a pure state, a mixed state is not represented by a vector in Hilbert space.

It is represented by a density matrix: p = Zj ¢;|v;)(1;], where g; is the probability

6



that the system is in the state |1;). (This definition should not be confused with the
probabilities of measurement results.) In particular, the pure state |1} is represented by
the density matrix p = |[¢) (1|

For example, if the system is prepared in the |0) state with probability % or in
the |+) state with probability %, then the quantum state of this mixing is the mixed
state p = £]0)(0] + Z|+)(-+|. It should be emphasized that those probabilities are of
the preparation, not of any measurement. For example, if the state is measured in the
{|0),]1)} orthonormal basis, the probability of measuring “0” is %, and the probability of
measuring “1” is #; if it is measured in the {|+), |—)} basis, the probability of measuring
is 1. Notice that the probability of

6
measuring “0” is not % and that the probability of measuring “+” is not %

7

“+7 s %, and the probability of measuring “—

Note that several different probability distributions may represent the same mixed
state: namely, the states they represent are physically the same (e.g., giving exactly
the same measurement results in all orthonormal bases). This happens if and only if
they are represented by equal density matrices. (A similar observation is that a global
phase €? for pure states has no physical significance; and, indeed, the two pure states
) and €|+)) are represented by equal density matrices, p = [)(¢)|.) For example, the
completely mized state p = 1]0)(0| + 3|1)(1] is the same as p = $|+)(+| + 3|—)(—|, and
those two density matrices are equal.

A (normalized) density matrix satisfies three conditions: it is a Hermitian operator;
it is positive semidefinite; and it is normalized (that is, its trace equals 1). Those three
conditions are also sufficient: any matrix p satisfying them is a (normalized) density
matrix. The set of (normalized) density matrices corresponding to the Hilbert space H is
denoted by L(#) (this is also the set of mized states that are mixtures of pure states from
the Hilbert space H). From those three conditions it follows that every (normalized) den-
sity matrix p can be presented as p = > Aj[1;)(;| (the spectral decomposition), where
Aj 20, > A; =1, and {|¢;)}; is an orthonormal set (of eigenvectors). In other words,
for any mixed state we can choose a corresponding probability distribution over a set of
orthonormal states. For example, for p = £|0)(0|+2|+)(+], the spectral decomposition is

p = 345 | 210+(VE-D[1) | | 2(0[+(v5-1)(1] + 3-v5 | 2100—(V5+D)[1) | | 2(0[=(v/5+1){1] and
6 V10-2v5 V10-2v5 6 V10+2v5 Vior2vs |’

it is the unique decomposition of p as a mixture of orthonormal pure states; on the

other hand, the completely mixed state p = [0)(0] + 3|1)(1] = 3|-+)(+| + 5|—)(—|

has an infinite number of decompositions as a mixture of orthonormal pure states,

1
2

corresponding to the same eigenvalue.

because its eigenvalue (5) is degenerate — namely, it has two orthonormal eigenvectors

The probability distribution in the definition of the mixed state represents the
“standard” (“classical”) notion of uncertainty, and not a quantum phenomenon; it simply
represents lack of knowledge. Nonetheless, mixed states naturally arise in many areas of
quantum information. Most notably, if a compound system AB is in an entangled pure

state, then the quantum state of each of the subsystems A and B is mixed. For example,



if the state of the system AB is the entangled pure state %|O>A|O>B + \/g|1>,4|+>3,
the quantum state of the subsystem B is the mixed state p = £|0)5(0|5 + 2|+)5{-+|5
that we have seen before. Moreover, we note that the state of the system AB can also
be represented as \/%“HA% - %“)A‘UB% thus, the state of the subsystem B

NG
5 [200p+L)ps | [200s+ls

can also be represented as p = ¢ [ NG } [ v ] + £|1)5(1| . This is another

example of multiple probability distributions corresponding to the same mixed state.

An important difference between a pure state and a mixed state should be noted:
for a pure state [¢), there is an orthonormal basis (consisting of [¢)) and of states
orthonormal to it) such that if |¢)) is measured with respect to it, there is a specific
measurement result (|1)) obtained for certain. This is never true for a mixed state p:
its measurement result is uncertain if measured with respect to any orthonormal basis.

If a mixed state p is measured with respect to an orthonormal basis {|¢1), [t2), ..., [¥n)},
we get the result “ir” with probability py = (VY| p |tr). If we apply a unitary operator
U to a mixed state p, the resulting state is the mixed state UpUT.

1.5 Allowed Quantum Operations
The most general operations allowed by quantum physics for the Hilbert space H are:

1. applying any unitary operator U : H — H (see Subsection 1.1.2);

2. measuring the state with respect to some orthonormal basis (see Subsection 1.1.1);
3. adding a new (ancillary) subsystem; and

4. removing (ignoring and forgetting) a subsystem.

1.6 Quantum Key Distribution

Quantum Key Distribution (QKD) makes it possible for two legitimate parties, Alice
and Bob, to generate an information-theoretically secure key [BB84], that is secure
against any possible attack allowed by the laws of quantum physics. Alice and Bob use
an insecure quantum channel and an unjammable classical channel. The adversary Eve
may interfere with the quantum channel and is limited only by the laws of nature; she
may not, however, modify the data sent in the unjammable classical channel (she can
only listen to it).

QKD protocols achieve the classically-impossible goal of distributing a secret key
to two parties (Alice and Bob), in a way that is secure against all the possible attacks.
Moreover, the key shared by Alice and Bob remains secret even if weaknesses in the
devices (currently unknown to anyone, including the adversary) are discovered in the
future: namely, for the adversary Eve to find the key, she must attack when Alice and

Bob apply the protocol, and not later (while for encryption methods such as RSA, Eve



may keep the ciphertext until she is able to find the private key, e.g., by factorizing a
large number).
The first QKD protocol was BB84 [BB84]. The BB84 protocol, operated by the two

parties Alice and Bob, consists of the following steps:

1. Alice sends to Bob N quantum states, all of them randomly chosen from the
following set: {|0), |1),|+),]|—)}

2. Bob measures all the received states; for each of the states, he chooses randomly
whether to measure it in the z basis {|0), 1)} or in the z basis {|+),|—)}. If Bob
measures in the z basis, he identifies |0) and |1) with certainty, but gets a random

result if |[4) or |—) is sent; the converse is true for the = basis.

3. Now Alice and Bob each holds a (classical) bit string: Alice holds the list of bits
she sent (bit 0 corresponding to the states |0) and |+), and bit 1 corresponding to
the states |1) and |—)), and Bob holds the list of bits he measured (with similar
interpretations as Alice). In addition, Alice knows the basis she used to send each

state, and Bob knows the basis he used to measure each state.

4. Alice and Bob reveal (by using the classical channel) their basis choices, and they
discard all the states that Bob measured in a basis different from the one sent by
Alice.

5. Alice and Bob reveal some random subset of their bit string (“TEST bits”),
compare the bits, and estimate the error rate. They abort the protocol if the error
rate is above a specified threshold (in BB84, the asymptotic threshold (for infinite
key-length) is 11% [RGKO05, SP00]). They discard the revealed bits.

6. Now Alice and Bob keep only the string of bits that were measured by Bob in the
same basis they were sent by Alice (and that were not discarded): they are called
“INFO bits”. If there is no noise or eavesdropping, the INFO bits should be the

same for Alice and Bob.

7. Alice sends to Bob error correction information, and Bob corrects the errors in

his bit string, so that it is the same as Alice’s.

8. Alice and Bob perform a privacy amplification process, yielding a final key that is

identical for Alice and Bob and is fully secure against any eavesdropper.

Many QKD protocols have been proven fully (and unconditionally) secure in the
theoretical sense; see Section 2.4 for more details about the security of QKD.

However, practical implementations deviate from the theoretical descriptions, and
they may thus be insecure. T'wo important attacks that take advantage of this fact are the
“Photon Number Splitting” attack [BLMS00b, BLMS00a] and the “Bright Illumination”
attack [LWW™'10]. The “Photon Number Splitting” attack takes advantage of the



fact that in most practical implementations, Alice cannot generate only one-photon
pulses, but sometimes generates pulses of two (or more) photons: Eve can, under certain
conditions, get full information on the secret key without inducing errors. The “Bright
[Nlumination” attack uses a weakness of Bob’s detectors, existing in most practical
implementations, to get full information on the secret key without inducing errors.
Other QKD protocols, either similar to BB84 or ones that use different approaches,
have also been suggested, and in some cases have also been proven fully secure. In
particular, the “three-state protocol” [Mor98| uses only the three states {|0),|1),|+)}
(with |4+) being used only for testing, while |0) and |1) being used both for key-
generation and for testing), and it has been proven secure [FL06, BGLS07, Kral6];
the “classical Bob” protocol [BKMO7] is a two-way protocol such that only Alice has
quantum capabilities and Bob has only classical capabilities, and it has been proven
robust [BKMO07] (see Section 2.4 for the definition of robustness) and secure [Kral5|;
and the “classical Alice” protocol [ZQLT09] is similar to “classical Bob” with Alice

being the classical participant instead of Bob, and it has been proven robust [BM11].

1.7 Structure of this Thesis

In Chapter 2, we present the definitions of several important notions in quantum
information, that are useful for this thesis: quantum entanglement of mixed states,
Bloch sphere, trace distance, and security of quantum key distribution (QKD).

In Chapter 3, we discuss the geometry of entanglement in the Bloch sphere: we
define a generalized notion of a Bloch sphere (corresponding to each 2-dimensional
Hilbert subspace, and to each rank-2 quantum mixed state), and we see that the pattern
of entanglement in each Bloch sphere always belongs to one of five classes.

In Chapter 4, we discuss a variant of the quantum key distribution (QKD) protocol
BB84 that we name BB84-INFO-z, and we prove that BB84-INFO-z is secure against
collective attacks. We use the notion of the trace distance for making the proof more

composable than similar proofs.

10



Chapter 2

Preliminaries

In this chapter, we introduce several basic important notions of quantum information,

that are useful in later parts of this thesis.

2.1 Quantum Entanglement of Mixed States

We remember that £(H4 ® Hp) is the set of mized states that are mixtures of pure
states from the bipartite Hilbert space H4 ® Hp.

A separable mixed state in L(H Q@ Hp) is a mizture of tensor product pure states: in
other words, it can be represented as p = >, q;[¢j) a|d;) (] 1 (&1 5, With [¢h;)a € Ha
and |¢;)p € Hp.

Any other state in L(H4 ® Hp) (namely, any state that cannot be presented as a
mizture of tensor product pure states) is called entangled.

For example: p = 1(00)45(00] 45 + 3|11) a5(11| 43 is a separable two-qubit state.

Notice that entanglement is not the same as correlation: the state p = £|00) 45(00| , 5+
$111) ap(11| 4 5 above has the states of its two subsystems (4 and B) correlated, but it
is not entangled, because this is only a classical correlation. Entanglement, on the other
hand, is a quantum phenomenon, representing only quantum correlations that have no

classical explanation.

Extensions of those definitions to the multipartite case are given in Section 3.9.

2.2 Bloch Sphere

The Bloch sphere, also known as the Poincaré sphere, is a geometrical representation of
the pure and mixed qubit states (namely, of the pure states in Ho and of their mixtures
in £(H2)). It is drawn in Figure 2.1.

The Bloch sphere is the unit sphere in the three-dimensional Euclidean space R3.

11



0)

Figure 2.1: Bloch sphere corresponding to the qubit Hilbert space H-

2.2.1 Representation of Pure States on the Bloch Sphere

There is a one-to-one correspondence between the normalized pure states in Ho and the
points on the Bloch sphere. Each point on the sphere is represented by the vector 7 in
spherical coordinates: (r,0,®), with r = 1. (We note that, as is standard in physics, the
angle 6 is the angle between the vector 7 and the positive z axis, while the angle ¢ is the

angle between the projection of the vector 7 on the x — y plane and the positive x axis.)

The most general normalized pure state in Ho is:

1) = cos <9> |0) + €% sin ( ) 1) (2.1)

(The global phase does not matter, so we can assume that the coefficient of |0) is real.)

This state (and any multiple by a global phase) corresponds to the point (1,6, ¢) in
spherical coordinates — namely, to the point 7= (x,y, z) = (sin 6 cos ¢, sin # sin ¢, cos 6)

in Cartesian coordinates.

We can find the density matrix corresponding to [i)):

9 sin
_ cos? e~ cos (g) sin (g)
et cos sm (g) sin® (%)
1+c05 0 (cos ¢p—isin ¢) sin 6
_ 2
- (cos ¢+isin ¢) sin 6 ¢>+z sin ¢) sin 6 1—cos
2
1 1+ cosf sin @ cos ¢ — i sin 6 sin ¢
2 \ sinfcos ¢+ isinfsin ¢ 1 —cos6
1+ —1
= cY (22)
z+iy 1—=z2
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We thus see that the density matrix p of a pure state is directly determined by the
corresponding point (x,y,z) on the Bloch sphere. We will soon see that a similar

correspondence (by using the same equation) is obtained for the mixed states.

Examples

e For 6 = 0, the obtained state is |0), corresponding to the +Z point on the Bloch
sphere.

e For § = , the obtained state is €’?|1) (this is the same state for all ¢, because a

global phase does not matter), corresponding to the —2 point on the Bloch sphere.

io
e For 0 = 7, the obtained states are %, corresponding to the points on the
Bloch sphere that are on the x —y plane. Examples of such states are |[+) (obtained

for ¢ = 0) and |—) (obtained for ¢ = 7).

Useful Property An important property satisfied by the Bloch sphere: two pure
states [1)) and |¢) are orthogonal if and only if |¢) and |¢) are connected by a diameter
in the Bloch sphere. See, for example, Figure 2.2.

0)

Figure 2.2: A diameter connects any two orthogonal pure states on the
Bloch sphere.

2.2.2 Representation of Mixed States inside the Bloch Sphere

There is a one-to-one correspondence between the mixtures of states in Ho (namely, the
mixed qubit states in £(Hs)) and the points inside the Bloch sphere.

We analyze a mixture of two pure states, p1 = q|1)(¥| + (1 — ¢)|¢) (], such that |i))
is represented by the point 7y = (2, Yy, z,) on the sphere and |¢) is represented by
the point 77 = (¢, Ysp, 2p) on the sphere. We represent this mixture p; by the point
7o = qTy + (1 — q)7y inside the Bloch sphere: namely, by a point that is a convex
combination of the two points 7 and 74 (and, thus, that is on the line between them).

See Figure 2.3 for an illustration of this representation.

13



9)

Figure 2.3: A mixture of two states is represented by their convex
combination inside the Bloch sphere — namely, it is on the line between them.

We now show that, given the above representation, equation (2.2) holds also for

mixed states:

p1= qP)(@l+ (1 —q)lo) {4l

_ g T+2zy  my —iyy +1—q 1+2zp g — 1Yy
2\ zyp+iyy 11—z 2 Ty +iys 11—z

_ 1 1+ g2y + (1 - q)24] lqzy + (1 = @)ze] — i [qyy + (1 — @)y
2\ lgzy + (1= q@)zg] +ilayy + (1 — q)ye] 1= [gzy + (1 = q)2g)

N

< 1+ 2, Tp; — 1Yp, ) (2.3)

Tpy + 1Ypy 1 - Zp1

Equation (2.3) can be easily generalized to any mixture of states of any type (pure or
mixed): namely, the mixed state p =) ;4pj s represented by the convex combination
point 7, = 3. q;7p, -

We note that each density matrix corresponds to a unique point inside the Bloch
sphere. In particular, different probability distributions that correspond to the same
mixed state (and that are thus represented by the same density matrix) correspond
to a single point inside the Bloch sphere. For example, the completely mixed state
correponds to the origin (0,0,0), and it is an equal mixture of the states in any any
orthonormal basis: p = 1[0)(0] + 3|1) (1| = &[+)(+| + &|—)(—|, etc.

2.3 Trace Distance

The trace distance between two quantum states is, informally, a measure of their

distinguishability.

14



2.3.1 Mathematical Definition and Interpretation

The trace distance of two states p and ¢ is defined as follows:

D(po) 2 Strlp—ol = g try/(p—)l(p—o0) (24

(Because |A| is defined as vV ATA.)

This definition can be interpreted as follows [FvdG99]: since p — ¢ is a Hermitian
operator, it has a spectral decomposition p — o = >, Aj[¢);)(¢;], where A; € R and
{|1;)}; is an orthonormal set. It also holds that (p — o)T = p — 0. Therefore,

2

p—ol=vlp—0)2= | [ DM@l | = > X = [l (],
J J J

(2.5)
and we find that ) )
D(p,0) 2 Stxlp—ol= 3 3" Iyl (2.6)
J

We conclude that the trace distance D(p, o) is one half of the sum of absolute values

of the eigenvalues of p — 0.

2.3.2 Geometrical Interpretation for Qubits

In the case of qubit states (pure or mixed), there is a simple geometrical interpretation
for the trace distance: the trace distance between p and o is one half of the Euclidean
distance between the points representing p and ¢ inside the Bloch sphere.

Following [NCO00, page 404], we can prove this result as follows: according to

equation (2.3), if p and o are represented by the points 7, = (z,,y,,2,) and 7y =

1+~2 Tp—1
(%o, Yo, 20) in the Bloch sphere, respectively, then p = % r p— e and
Tot+iy, 1—2
1 1+ 2, Lo — iya o o o
o=z ] . . Let us denote A7’ = 7, — 7'5. Therefore,
Lo + 1Yo — 2o
1 Az Ax —iA
p—o=— _ . (2.7)

2\ Az +iAy Az

It can easily be verified that the eigenvalues of p—o are Ay = :l:% \/Aaj2 + Ay? + Az2.
Thus, according to equation (2.6),

1 1 1
D(p,o0) = 5 [2 . 5\/Ax2 + Ay? + AZQ] =3 |77 — 7o) - (2.8)

This idea is demonstrated in Figure 2.4.
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Figure 2.4: The trace distance between two qubit states is one half of their
geometrical distance in the Bloch sphere.

2.3.3 The Information-Theoretical Meaning of the Trace Distance

It can be proved [FvdG99, BBB'02] that the trace distance D(p,o) between the
two quantum states p and ¢ upper-bounds the Shannon Distinguishability between
p and o, that is defined as the classical mutual information between the random

) A~ ] 0 The quantum state is p )
variable T' = and the random variable X (the result of a

1 The quantum state is o
measurement), maximized over all the possible quantum measurements (including the
ones consisting of adding an ancillary state, performing a general unitary transformation,
and then measuring).

In other words, the trace distance upper-bounds the information that some party,
who holds some quantum state and does not know whether it is p or o (it can be either
p or o, with equal probabilities), can find by using a measurement.

For example: D(]|0)(0[,|1)(1]) = 1, because the quantum states |0) and |1) can be
distinguished for certain by measuring in the {|0),|1)} basis; and D(|0)(0],]0)(0]) = 0,
because the quantum state |0) is equal to |0), so they cannot be distinguished from each
other at all.

2.4 Security Definitions of Quantum Key Distribution

Originally, a quantum key distribution (QKD) protocol, as defined in Section 1.6, was
defined to be secure if the (classical) mutual information between Eve’s information and
the final key, maximized over all the possible attack strategies and measurements by Eve,
is exponentially small in the number of qubits, N. Examples of security proofs of BB84
that use this security definition are [May01, BBBT06, SP00]. Those security proofs
used the observation that one cannot analyze the classical data held by Eve before
privacy amplification (as done in [BBCM95]), but must analyze the quantum state held
by Eve [BMS96]. In other words, they assumed that Eve could keep her quantum state

until the end of the protocol, and only then choose the optimal measurement (based on
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all the data she observed) and perform the measurement.

Later, it was noticed that this security definition may not be “composable”. In other
words, the final key is secure if Eve measures the quantum state she holds at the end
of the QKD protocol, but the proof does not apply to cryptographic applications (e.g.,
encryption) of the final key: Eve might gain non-negligible information after the key is
used, even though her information on the key itself was negligible. This means that the
proof is not sufficient for practical purposes. In particular, those applications may be
insecure if Eve keeps her quantum state until Alice and Bob use the key (thus giving
Eve some new information) and only then measures.

Therefore, a new notion of “(composable) full security” was defined [BOHL™05,
RGKO05, Ren08] by using the trace distance (see Section 2.3), following universal com-
posability definitions for non-quantum cryptography [Can01, PWO00]. Intuitively, this
notion means that the final joint quantum state of Alice, Bob, and Eve at the end of the
protocol is very close (namely, the trace distance is exponentially small in V) to their
final state at the end of an ideal key distribution protocol, that distributes a completely
random and secret final key to both Alice and Bob. In other words, if a QKD protocol
is secure, then except with an exponentially small probability, one of the two following
events happens: the protocol is aborted, or the secret key generated by the protocol is
the same as a perfect key that is uniformly distributed (i.e., each possible key having the
same probability), is the same for both parties, and is independent of the adversary’s
information.

Formally, papEg is defined as the final quantum state of Alice, Bob, and Eve at the
end of the protocol (with Alice’s and Bob’s states being simply the “classical” states
|ka)a and |kg)p, where k4 and kp are bit strings that are the final keys held by Alice
and Bob, respectively; note that usually k4 = kp); py is defined as the complete mixture
of all the possible keys that are the same for Alice and Bob (namely, if the set of possible
final keys is K, then py = ﬁ > rer |B)alk)B(k| 4 (k|g); and pE is defined as some state
of Eve. For the QKD protocol to be fully (and composably) secure, it is required that

1
B tr|paBe — pu ® pe| <€, (2.9)

where € is exponentially small in N. Intuitively, papg is the actual joint state of Alice,
Bob, and Eve at the end of the QKD protocol; py is the ideal final state of Alice and
Bob (an equal mixture of all the possible final keys, that is completely uncorrelated
with Eve and is the same for Alice and Bob); and pg is a state of Eve, uncorrelated
with the states of Alice and Bob.

Composable security of many QKD protocols, including BB84, has been proved [BOHL ™05,
RGKO05, Ren08].

A much weaker notion is the robustness of a QKD protocol [BKM07]. A QKD
protocol is completely robust if any nonzero information obtained by Eve on the INFO

string implies a nonzero probability that Alice and Bob find errors in the TEST bits.
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In other words, if a protocol is completely robust, then Eve cannot find any useful
information without causing errors that may be noticed by Alice and Bob. Robustness
does not imply full security (because one should prove that Alice and Bob can generate
a completely secret final key, by using error correction and privacy amplification, as

described in Section 1.6), but it is an important step towards proving security.
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Chapter 3

Geometry of Entanglement in the
Bloch Sphere

In this chapter, we classify all the possible Bloch spheres (and rank-2 states) into exactly
five classes, according to the set of separable states in the Bloch sphere.
This chapter is based on the published journal paper [BLM17a].

3.1 Introduction

Entanglement is a very important property of quantum states, relevant to the foun-
dations of quantum mechanics (e.g., the Einstein-Podolsky-Rosen paradox and Bell’s
inequality), as well as to quantum information, quantum communication (including
quantum teleportation and quantum cryptography), quantum computers and simulators,
and quantum many-body systems.

The relations between entanglement, partial transpose (defined in Section 3.2),
and non-classical correlations between the subsystems, are well-understood for pure
quantum bipartite states. However, for mixed quantum states there are still many
open questions. Even bipartite mixed states of rank 2 (namely, states that can be
written as p = q|vo)(¢o| + (1 — q)|¢1) (1], where 0 < ¢ < 1, and |vy), |1)1) are bipartite
orthonormal states and are the eigenstates of p), that are discussed in this chapter,
are not well-understood. Studying such states is thus a major challenge in the field of
mixed-state quantum entanglement.

It is known that if a mixed state does not have a positive partial transpose then it
is entangled and presents a nonlocal behavior [Per96]. However, one can find separable
states presenting a nonlocal behavior (e.g., [BDF*99]), and one can find entangled
states that have a positive partial transpose [HHH96, Hor97]; those states are bound
entangled, namely, their entanglement cannot be distilled [HHH98]|. It was later proved
that bound entangled states cannot have rank 3 or less [HSTT03, CCO08|. Therefore,
checking whether a specific rank-2 state is entangled is trivial: it is entangled if and

only if it does not have a positive partial transpose; however, in this chapter we discuss
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the problem of classifying each rank-2 state by checking which states in its Bloch-sphere
neighborhood (namely, in its corresponding Bloch sphere) are entangled.

Entanglement distillation (for pure states) [BBPS96] and entanglement purification
(for mixed states) [BBPT96] are processes of distilling Bell states (or other maximally
entangled states) from some copies of an initial state. An efficient protocol is known for
pure states, but not for mixed states. This provides another motivation for studying
and finding ways to fully characterize the simplest non-pure bipartite states (the rank-2
bipartite mixed states).

The notion of the Bloch sphere, also known as the Poincaré sphere, is a very useful
geometrical interpretation of a single qubit — namely, of the 2-dimensional Hilbert
space Hay (see Section 2.2 and Figure 2.1). We notice that Ho is isomorphic to any
2-dimensional (complex) subspace of a full Hilbert space. Therefore, given any 2-
dimensional Hilbert subspace H and its orthonormal basis {|¢0), |11)}, we can define
a unique generalized Bloch sphere representing #H (the uniqueness is up to a possible
rotation of the sphere; see Section 3.4): we represent |¢9) by the north pole and |i1)
by the south pole; all their superpositions (the pure states) are on the sphere; and all
the pure states’ mixtures (the mixed states) are inside the sphere. For example, H can
be the subspace spanned by the eigenstates [¢g),|¢1) of a given rank-2 mixed state
p = qlo) (Yol + (1 — q)|w1) (11, as illustrated in Figure 3.1.

| Wo)

P

Y1)

Figure 3.1: Bloch sphere of the 2-dimensional Hilbert space Span{|vy), [¢1)}

We define here the “Bloch-sphere entanglement” of a quantum rank-2 bipartite state.
This (informally) means that we define the sets of separable states and of entangled
states inside the unique Bloch sphere associated with this quantum state. We provide
some examples, and we prove that the five classes we present exhaust all the possibilities
of “Bloch-sphere entanglement”. We briefly discuss going beyond bipartite states, and
we briefly present an interesting exception (from the above classification) for the case of
just two qubits.

In Section 3.2 we explain the Peres-Horodecki entanglement criterion. In Section 3.3

we present a weaker entanglement criterion that we will use for proving our claims. In
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Section 3.4 we introduce several important properties of Bloch spheres to be used in
our proofs. In Section 3.5 we present a classification of all rank-2 states into five classes.
In Section 3.6 we present entanglement measures based on the Bloch sphere and on
the trace distance. In Section 3.7 we prove that no other classes exist. In Section 3.8
we prove that one of the classes does not exist in a specific case (the two-qubit case).
In Section 3.9 we generalize some of our results to multipartite entanglement. In

Section 3.10 we describe previous works in this area. In Section 3.11 we conclude.

3.2 The Peres-Horodecki Criterion

Given a system AB represented by the Hilbert space H4 ® Hp, and given a mixed state
paB € L(Ha ® Hp) (namely, pap is a mixture of pure states in Hy ® Hp), we can
represent psp as a matrix in the standard (computational) basis {|i)4 ® |k)B}ik, as

PAB = Z aijktli) a(ila @ [k)B{ 5, (3.1)
.5,k

where the scalars a;ji; € C are the matrix elements. (Notice that in the proof of
Lemma 3.1, we define Cjjp = |i) a(j| 4 ® |k)5{l| 3, and thus we can represent pap as a
linear combination of Cjjx;.)
We define the partial transpose of pap with respect to the subsystem B, denoted as
Tp
P4p> as

pAB £ Z aljkl’ ]‘A® ’l> <k’B (32)
4,5,k

In other words, we perform the “transpose” operation only on the subsystem B and not
on the subsystem A.

The Peres-Horodecki criterion [Per96, HHH96] says that if for a state p of the
system AB, the operator p’? is not positive semidefinite (namely, if it has a negative
eigenvalue), then p is entangled.

It was shown in [HHH96] that for systems of dimensions 2 ® 2, 2® 3, or 3® 2, p
is entangled if and only if p'® is not positive semidefinite. This was also proved to
be true for states of rank 3 or less [HSTT03, CCO08]. However, in higher dimensions
and higher ranks there are entangled states (that are bound entangled states, namely,
their entanglement cannot be distilled) that have a positive partial transpose [HHH96,
Hor97, BDM199].

3.3 A Weaker Entanglement Criterion

We will use this weaker entanglement criterion for proving our claims:

Lemma 3.1. Let pap be a state of a bipartite system. If there are states |¢pa), |¢B),
a), and [¢Yp) such that (padp|pap|dadp) = 0 and (pavs|pap |[Vadp) # 0, then
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pAB s entangled.

Proof. Let p = pap, |¢) = |padF), and 1) = |[1ha1};), where |¢];) and [¢];) are obtained
from |¢p) and |¢p) by replacing their amplitudes in the standard (computational) basis
by their complex conjugates: if |¢p) = >, a;[j), then |¢F) = >, a7]j). We note that
(Kl%) = af = (@plk) and that ($5]1) = g = {I|ép).

We first need a property of p’B. By definition, the partial transpose of Cijri =
15y (j| @ |k)(l] is C zykl = |i)(j| ® |I)(k|, and the partial transpose p’Z of p is obtained by

a linear extension. Therefore, for Cj;1; it holds that

(adh| CLE [ avg) (Dali) (a) (@10 (ElvE)

= (¢ali)(jlva)(¥Blk)(l|oB)
= (0a¥B| Cijri |VadB) (3.3)
and by linearity,
(P05 p™® [V atE) = (pav| phads) - (3.4)

If the condition of the Lemma is satisfied, then (¢ 4¢%| p'? |pad’y) = (dadp|p|dads) =

0 and (pad%| pTB [har%) = (datp| p|adp) # 0. From Lemma 3.2 it follows that p’?
is not positive semidefinite. Therefore, by the Peres-Horodecki criterion, p is entangled.[]

We declare this Lemma to be a “weaker” criterion because it proves entanglement only

for a subclass of all the states satisfying the Peres-Horodecki criterion.

Lemma 3.2. If a Hermitian operator A is positive semidefinite and (| A |p) = 0, then
(¢l Aly) =0 for all |¢).

Proof. Because A is a Hermitian operator, it has a spectral decomposition: A =
> Aili) (@] with A; > 0 (because A is positive semidefinite). It thus holds that

0= (¢ Alg) = ZA (i) ZMM (3.5)
Therefore, for any i satisfying A; # 0, it must hold that (¢|i) = 0. It follows that
(o] Aly) = ZA (@li) (i) =0 (3.6)

for all |¢). O

Lemma 3.2 was presented earlier in a conference [BM14, BBM17].

3.4 Properties of Subspaces and Bloch Spheres

In the next sections, we also use the following results, that were also proved in [Hor97,
HJW93] and mentioned in [OSUO08|:
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Lemma 3.3. Let H' be a subspace of a Hilbert space H. Let p € L(H') (i.e., p can be

decomposed as a mizture of pure states from H'). If p =", qj|¢;)(¢;| is a decomposition
of p with |¢;) € H and gj > 0, then |¢;) € H' for all j.

Proof. Let {|v;)},c be an orthonormal basis of the Hilbert space H'. Since H' C H,
we can extend this orthonormal basis to an orthonormal basis {|v;)}icr of H (where
I' C I). Since p € L(H'), and since |1);) is orthogonal to H' for all 4 € I'\ I, it holds
that (1| p|ti) =0 foralli e I\ I

For all j, because |¢;) € H, we can present |¢;) = > .. aji|[v;), with aj; = (V;|d;).
Then for alli € I\ I,

0 = (il p[vhs) = qu (Wil ds) (d51s) = Zq] (Wil )P qulaﬂl (3.7)

Since g; > 0 for all j, this implies that aj; = 0 for all j and ¢ € T\ I'. Therefore, for all
J, it holds that [¢;) = >,c v aji|ths), which means that |¢;) € H'. O

Corollary 3.4. If a rank-2 mized state p is inside a specific Bloch sphere, then all the

pure states in all of its decompositions lie on the same Bloch sphere.

Proof. If p is inside a specific Bloch sphere that represents the 2-dimensional Hilbert
space H', then it can be represented as a mixture of pure states in H'. Let us be given
any decomposition of p as a mixture of pure states in some Hilbert space H (that can
be assumed, without limiting generality, to have H' as a subspace), p = > y 4|5 (@j]-
According to Lemma 3.3, it holds that |¢;) € H' for all j — namely, all the pure states

in this decomposition are in H’, and therefore they are on the same Bloch sphere. [J

By using Corollary 3.4, we get:

Corollary 3.5. If p is a rank-2 mixed state, then it lies inside a unique Bloch sphere

(the uniqueness is up to a possible rotation of the sphere).

Proof. p lies inside the Bloch sphere that is spanned by its two eigenstates; we now
denote this Bloch sphere as B. According to Corollary 3.4, all the other pure states in
all the other decompositions of p lie on B. Since all the Bloch spheres that contain p
include at least two linearly independent pure states that are in a decomposition of p,
and since those pure states are on B and thus span B (up to some rotation), we conclude

that all the Bloch spheres containing p are the same as B (up to some rotation). O

Corollary 3.6. If a rank-2 mized state p is separable, then there exist at least two

different pure separable states on its unique Bloch sphere.

Proof. If p is separable, then it can be decomposed as a mixture of at least two pure
states that are tensor product (separable) states. According to Corollary 3.4, those pure

states lie on its unique Bloch sphere (that exists according to Corollary 3.5). O
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3.5 Classification of Bloch-Sphere Entanglement

“weaker entanglement criterion”),

In the rest of this chapter we use Lemma 3.1 (a
Lemma 3.2 (a “positive semidefinite operators condition”), Corollary 3.5 (the “unique-
Bloch-sphere corollary”), and Corollary 3.6 (a “separable states condition”) in order to
provide a classification of Bloch-sphere entanglement. This is based on the following
understanding: if p is a bipartite rank-2 mixed state that is a mixture of pure states in
the Hilbert space H 4 ® Hp, then according to Corollary 3.5, it lies inside a unique Bloch
sphere (the uniqueness is up to a possible rotation); and this Bloch sphere corresponds
to a 2-dimensional subspace of H4 ® Hp.

We present five different classes of 2-dimensional subspaces of a bipartite system,
that are distinguished by their Bloch-sphere entanglement: (It is sufficient to consider
only examples for which H 4 is 2-dimensional (H3) and Hp is either 2-dimensional (Hs)

or 3-dimensional (H3).)
1. No entanglement at all

Example in Ho ® Ha: Span{|00),|01)} (Figure 3.2)

2. Entanglement everywhere on and inside the sphere except a line (of separable
states) connecting two orthogonal pure states on the sphere (e.g., the poles)
Example in Ha ® Ho: Span{|00), |11)} (Figure 3.3)

3. Entanglement everywhere on and inside the sphere except a line (of separable
states) connecting two non-orthogonal pure states on the sphere

Example in Hy ® Ha: Span{|00), |++)} (Figure 3.4)

4. Entanglement everywhere on and inside the sphere except a single separable point

on the sphere

Example in Ha ® Ha: Span{|00), «|01) + 5]|10)} with af # 0 (Figure 3.5 and
Proposition 3.7)

5. Entanglement everywhere (“completely entangled subspace”)

Example in Ho ® H3: Span { \00)\4/-%11)7 |02>j§|10>} (Figure 3.6 and Proposition 3.8)

Does not exist in Ha ® Ha. (Proof is given in Section 3.8, as Proposition 3.10.)

Very similar examples can be found in all the bipartite Hilbert spaces (if the
dimensions of both subsystems are at least 2), except the example to Class 5, that does
not exist in Ho ® Ho.

The analysis of Classes 1-3 (see Figures 3.2-3.4) is very simple and follows directly
from the proof of the general Theorem 3.9. Generally speaking, if two pure separable
states exist on the Bloch sphere, then it belongs to one of those classes.

We now analyze the example for Class 4 (see Figure 3.5), a class that we found, yet

was also found independently by [RA16a].
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01)

Figure 3.2: Bloch sphere of the example for Class 1: all the states on and inside
this Bloch sphere are separable.

00)

1)

Figure 3.3: Bloch sphere of the example for Class 2: all the states along the line
connecting |00) and |11) are separable; all the other states on and inside this Bloch
sphere are entangled. Any two orthogonal product states can replace |00) and |11).
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00)

H+)

[j01) +10) +[11)] /+/3

Figure 3.4: Bloch sphere of the example for Class 3: all the states along the line
connecting |00) and |++) are separable; all the other states on and inside this Bloch
sphere are entangled. Any two non-orthogonal linearly independent product states can
replace [00) and |++).

Proposition 3.7. Let [¢)) = |00) and |11) = a|01)+5|10) with aB # 0, |a|?+|3]? = 1.

The state p = ago|tbo) (1ol + ao1 |to) (1] + atolthr) (ol + ar1|y1) (1| is separable if and
only if agy = a9 = a1 = 0.

Proof. We look at two possible cases:
1. If ail 7& 0, then:

(11 p|11) = 0 (3.8)
(10[p[01) = a11(10[¢1)(¢1]01) = a1 ™ # 0 (3.9)

Therefore, according to Lemma 3.1 (the “weaker entanglement criterion”), p is

entangled.

2. If aj] = 0, then:

(ilplr) = a1 =0 (3.10)
(1l plbo) = awo (3.11)

Therefore, according to Lemma 3.2 (a “positive semidefinite operators condition”),
because p is positive semidefinite, it must hold that a19 = 0. This implies that

apgr = CLTO =0. Therefore, aplp = aijp = a1l = 0.

We conclude that if p is separable, it must hold that a;; = 0 (otherwise, p would be
entangled), and thus ag; = a19 = a;1 = 0. On the other hand, if p is entangled, a1; # 0.

This concludes our proof. ]

Finally, for the example of Class 5 (see Figure 3.6):
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00)

a|01) + B[10)
off #£0

Figure 3.5: Bloch sphere of the example for Class 4: only the state |00) is
separable; all the other states on and inside this Bloch sphere are entangled.

Proposition 3.8. Let [i)g) = % and |1) = ‘02>\J}2|10>, The state p = ago|tbo) (Y| +

ap1|1o) (V1| + ato|t1) (Yol + a11|w1) (W] is always entangled.

Proof. By using Corollary 3.6 (the “separable states condition”), it is sufficient to prove
that all the pure states ) = i) + B|11) are entangled: if all the pure states on
the Bloch sphere are entangled, then all the mixed states inside the Bloch sphere are

entangled.

Let us look at the state

) = aldo) + BlY1)

Iy o B B
N L VLY

S elili). (3.12)

0]

11) + -—=[02) + = |10)

(1>

Assume by contradiction that [¢)) is separable. In this case, there must exist ag,a; and
bo, b1, by such that [¢) = (Zil:O ai\i>> ® (Z?:o bj]j>>, and, therefore, €;; = a;b; for all
1, 7. This means that the equations €y; = agb; = 0 and €12 = a1b2 = 0 must hold.

We notice that if ag = 0, then a = 8 = 0, and that if b; = 0, then o = 0. Therefore,
from the equation €g; = agb; = 0 we deduce that @ = 0. Similarly, from the equation
€12 = a1bs = 0 we deduce that 5 = 0. Therefore, we see that « = § = 0, which is
impossible.

We conclude that there are no separable pure states on the Bloch sphere. Therefore,

by Corollary 3.6, there cannot be separable mixed states inside the Bloch sphere. [
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[100) +|11)] /v/2

[102) +[10)] /v2

Figure 3.6: Bloch sphere of the example for Class 5: all the states on and inside
this Bloch sphere are entangled.

3.6 Entanglement Measures inside the Bloch Sphere

Our classification suggests natural ways to measure entanglement inside the Bloch
sphere: for example, entanglement may be measured by the Euclidean distance to
the closest separable state (e.g., given the Bloch sphere Span{|00),|11)}, the closest
separable state to the pure state «|00) + 8]11) is the state |a|?|00)(00] + |8]?[11)(11]) —
namely, by twice the trace distance to the closest separable state. We note that this
entanglement measure, unlike the measures analyzed by [LOSU06, OSUO0S]|, vanishes
only for separable states. Analyzing the properties of such measures is beyond the scope

of this work.

3.7 A Proofthat There are Exactly Five Classes of “Bloch-
Sphere Entanglement”

Our main goal is to provide a full analysis of the general bipartite case. We prove that
the classes we found are the only classes that exist in the bipartite case, for all the

rank-2 bipartite states (namely, for all the corresponding 2-dimensional Hilbert spaces):

Theorem 3.9. Let H be a 2-dimensional subspace of Ha @ Hp, where Ha and Hp are

two Hilbert spaces. Then H belongs to one of the following classes:

Class 1 The Bloch ball of H is completely separable.

Classes 243 The Bloch ball of H has one line of separable states, and all the other

states are entangled.

Class 4 The Bloch ball of H has one separable point (pure state), and all the other

states are entangled.
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Class 5 The Bloch ball of H is completely entangled.

(We note that Class 2 and Class 3 are discussed together, because in both of them the

Bloch ball has just one line of separable states.)

Proof. First, assume that there is no separable mized state inside the Bloch ball. This
means that there is at most one pure separable state on the Bloch sphere (because if
two pure states are separable, then the line connecting them inside the Bloch ball is
separable, too). This matches Classes 4 and 5.

Now assume that there is a separable mized state p inside the Bloch ball. According
to Corollary 3.6 (the “separable states condition”), this means that there are at least two
different pure separable states on the Bloch sphere. We denote them by [1)) = |[14)®]|¢5)
and |6) = [¢4) © [65).

We note that |¢) 2 |¢) (defining the symbol 2 to be “equality as normalized states,
possibly with different global phases”; thus, the symbol 22 means that the two normalized
states are really different, as opposed to states that are equal up to a global phase),
which means that |¢)) and |¢) are linearly independent. Therefore, the Bloch sphere
represents the 2-dimensional subspace Span{|t), |¢)}, which means that all the mixed
states inside the Bloch ball are of the form:

p = ago|) (Y| + ao[¥) (] + ai0|@) (Y| + ai1]d) (4| (3.13)

If [a) = |pa) or [B) = |¢pp), then obviously all the states on and inside the Bloch
sphere are separable, which matches Class 1.

If |[¢4) 2 |64) and 1) 2 |¢B), then we prove that only the line connecting |¢) and
|¢) inside the Bloch ball is separable, and that all the other pure and mixed states in
the Bloch ball are entangled. This will match Classes 243, and will conclude our proof.

We look at all the mixed states of the form (3.13). If apy = a19g = 0, then we

obviously get a separable state:

p = ago|a)(Yal ® [¥B) (V| + a11|ga){Pal @ |65) (5] (3.14)

If a1g # 0, then: let |pa) € Ha satisfy (da|da) =0 and (a|da) # 0 (|pa) always
exists, because |94) % |¢4)). Similarly, let |¢4) € Ha and |¢p), [B) € Hp satisfy
similar properties (because |¢p) 2 |¢p)). Then

(Va dB|p|va dB) =0, (3.15)

and

(bavp|p|dadp) = ar0(a¥ploads)(batploa ¢p)
= a10(Valoa)(¥BloB) (Valda)(¥B|oB)
£ 0. (3.16)
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Therefore, by Lemma 3.1 (the “weaker entanglement criterion”), if a9 # 0 (or
ap1 # 0 — this is equivalent, because ag1 = aj,), then p is entangled.

We conclude that only the line between [¢) and |¢) (i.e., the line of states satisfying
apy = aig = 0) is separable, and that the other states (i.e., the states satisfying aig # 0
or ag; # 0) are entangled, which matches Classes 2+3. This concludes our proof. [

3.8 A Proof that Class 5 Does Not Exist in the Two-Qubit

Case

We have seen that for almost all the bipartite Hilbert spaces, five classes appear. We

now show that for the Hilbert space Ha ® Ha, only four classes exist (Classes 1-4):

Proposition 3.10. No 2-dimensional subspace of Ha @ Ho is completely entangled.

Proof. This proof follows the methods of [OSU08|. For a two-qubit state [i)) =
>_i;@ijli)]7), the entanglement measure named “concurrence”, that is denoted by

C, is defined as follows [HW97, Woo01]:
C(¢) = 2|agoarr — aoaiol (3.17)

In particular, C(1)) = 0 if and only if |} is separable. (This is not necessarily true for
other entanglement measures.)
Let H 2 Span{|vo), |11)} be a 2-dimensional subspace of Hs ® Ha. Let us represent:

|Yo) = aoo|00) + ap1|01) + a10]10) + aq1|11) (3.18)
|1) = bool00) + bo1|01) + b10|10) + b11[11) (3.19)

We may assume that C(¢1) # 0 (otherwise, [¢1) is separable, hence H cannot be
completely entangled). Therefore, the set of separable pure states in ‘H (if we ignore

normalization) is the set of non-normalized states [¢g) + z|1)1) satisfying the equation
C(lto) + zlih1)) = 0, (3.20)
that rewrites as
2|(aoo + booz)(a11 + b112) — (ao1 + bo12) (a1 + bioz)| =0, (3.21)
or, removing the absolute value, as
2[(aoo + booz)(a11 + b112) — (ao1 + bo12) (a0 + b1oz)] = 0. (3.22)

This is a quadratic equation in the complex variable z. The coefficient of 22 is
2[boob11 — bo1b10], whose absolute value is C'(¢1) # 0. Therefore, according to the
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fundamental theorem of algebra, there are two solutions &1, &2 € C (possibly equal) to
this equation. Thus, the non-normalized state [1o) + &1|¢1) in H (and its normalization
in H) must be separable. Therefore, there is a separable state in H, and H cannot be

completely entangled. d

3.9 Examples and Analysis of Multipartite Entanglement

For multipartite states, there are several different definitions of separability and entan-
glement: an m-partite mixed state is “fully separable” if it is a mixture of pure states
that are products of m pure states; and it is “separable with respect to a bipartite
partition P” (with P partitioning the m subsystems into two disjoint sets) if the bipartite
state corresponding to the partition P is separable [HHHHO09]. For example, the state
|0)a|®+)Bc € Ha ® Hp ® Hc is separable with respect to the partition {{1},{2,3}},
but is entangled with respect to both partitions {{1,2},{3}} and {{1,3},{2}}. Note
that even if a state is separable with respect to all the bipartite partitions, it may still
be entangled (i.e., not fully separable) [BDM™99].

To illustrate the many existing possibilities for Bloch spheres in the multipartite

case, we look at two examples:

1. Span{|000), |111)}: the line connecting between the north pole (|000)) and the
south pole (|111)) is fully separable; all the other points are entangled with respect

to any bipartite partition.

2. Span{|000), |011)}: the line connecting between the north pole (]000)) and the
south pole (]011)) is fully separable; all the other points are separable with respect
to the bipartite partition {{1},{2,3}}, but are entangled with respect to the

partitions {{1,2}, {3}} and {{1,3},{2}}.

The proofs of separability above are direct from the definitions; and the proofs of
entanglement are implied by our analysis in the proof of Theorem 3.9.
Moreover, our Theorem 3.9 is true also for the set of fully separable states in the

multipartite case:

Theorem 3.11. Let H be a 2-dimensional subspace of Ha,®---Q@H 4,,, where Ha,, ..., Ha
are Hilbert spaces. Then H belongs to one of the following classes:

m

Class 1 All the states inside the Bloch ball of H are fully separable.

Classes 243 The Bloch ball of H has one line of fully separable states, and all the

other states are not fully separable.

Class 4 The Bloch ball of H has one fully separable point (pure state), and all the

other states are not fully separable.

Class 5 All the states inside the Bloch ball of H are not fully separable.
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Proof. First, assume that there is no fully separable mized state inside the Bloch ball.
This means that there is at most one pure fully-separable state on the Bloch sphere
(because if two pure states are fully separable, then the line connecting them inside the
Bloch ball is fully separable, too). This matches Classes 4 and 5.

Now assume that there is a fully separable mized state p inside the Bloch ball.
According to Corollary 3.6 (the “separable states condition”), this means that there are
at least two different fully separable pure states on the Bloch sphere. We denote them
by [¢) = [Ya,) ® -+ ® |a,,) and [@) = [Pa,) @ -+ ®[Pa,,)-

We note that [1)) 2 |¢) (defining the symbol = as we did in the proof of Theorem 3.9
above; thus, the symbol 2 means that the two normalized states are really different,
as opposed to states that are equal up to a global phase), which means that |¢)) and
|¢) are linearly independent. Therefore, the Bloch sphere represents the 2-dimensional
subspace Span{|¢),|#)}, which means that all the mixed states inside the Bloch ball

are of the form:

p = aoo|) (| + ao1 V) (@] + aio|®) (Y| + a11]0) (9| (3.23)

If [tha;) = |pa,) for all i except one value of 4, then obviously all the states on and
inside the Bloch sphere are fully separable, which matches Class 1.

If [ha, ) Z |94, ) and |4, ) Z |da,,) for i1 < iz, then we prove that given the
bipartite partition {Iy, o} with I = {1,...,i1} and Io = {i1 + 1,...,m} (satisfying
LUul, ={1,....m}, [ NIy =0, iy € I, and iy € I3), it holds that only the line
connecting |¢) and |¢) inside the Bloch ball is fully separable, and that all the other
pure and mixed states in the Bloch ball are entangled with respect to the partition
{I1,I>}. This will match Classes 2+3, and will conclude our proof.

To prove that the line is fully separable, we notice that any convex combination
of fully separable states is fully separable. Therefore, the line connecting |¢) and |¢$)
inside the Bloch ball is fully separable.

To prove that all the other states are entangled with respect to the partition {Iy, I},
we denote [p11) = |14,) ® -+ ® 14,,) and |l2) = V4, 1) ® - @ a,,); and similarly,
we define |¢") and |¢’2). Then, because i; < i, and because Va4, ) Z |ba, ) and
Va,,) Z |da,,), it must hold that [ty 2 |@) and |[¢2) 2 |¢'2). It also holds that
) = [p11) @ [f2) and |¢) = |p1) @ |¢2); therefore, according to the proof of the
original Theorem 3.9, it holds that all the states outside of the line connecting |¢)) and
|¢) in the Bloch ball (i.e., all the states satisfying ag; # 0 or a9 # 0) are entangled
with respect to the partition {1, Is}. Together with the proof that all the states on
that line (i.e., all the states satisfying ag; = a9 = 0) are fully separable, this matches

Classes 243, and concludes our proof. O

Extensions of Theorem 3.9 to other cases of multipartite entanglement are beyond

the scope of this work.
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3.10 Previous Works

The existence of completely entangled subspaces has been discussed in many papers
before. In particular, this notion was used in [BDM*99] to prove the existence of a
huge class of bound entangled states.

Analysis of entangled states in a Hilbert subspace, using specific entanglement mea-
sures (e.g., the concurrence and the 3-tangle) and Bloch spheres, was done by [LOSUO06]
and [OSUO08|. However, the entanglement measures they choose usually vanish not only
for all the separable states, but also for some of the entangled states [OSU08]. Much
more recently, [RA16a] and [RA16b] investigated interesting classes in the same research
direction. In contrast, this chapter analyzes the separability and the entanglement in the
Bloch sphere for any rank-2 bipartite state; and, instead of using a specific entanglement
measure that cannot show the entanglement of some of the entangled states, we fully

characterize the set of separable states on and inside the state’s Bloch sphere.

3.11 Conclusion

We have found a complete classification of the possible sets of separable states in all the
2-dimensional subspaces of bipartite Hilbert spaces. Our result is general and is not
limited to specific entanglement measures or to specific bipartite spaces, but it applies
to all the bipartite Hilbert spaces, and it extends to the sets of fully separable states in
multipartite spaces. Moreover, the result makes it possible to define natural measures
that vanish exactly on the separable states.

Our analysis identifies the set of “Bloch-sphere neighbor states” of any rank-2 state
(namely, the set of states in its Bloch sphere). Such Bloch-sphere neighbor states may be
useful for various protocols: for example, entanglement purification or error correction
protocols may first turn the state into a Bloch-sphere neighbor state of desired properties
(e.g., more entangled), and then operate on that Bloch-sphere neighbor state. Those
possibilities may be explored by future research.

Other potential applications of our geometrical view include analyzing many possible
physical and algorithmic processes defined by using two pure states. Namely, our
results and the geometrical intuition they provide may be useful for analyzing the
separability and entanglement during processes in which two pure states play important
roles. Potential examples, that are left for future research, include the Bloch sphere
spanned by an entangled ground state of some Hamiltonian and by the closest pure
separable state to this ground state with respect to some entanglement measure, and
the Bloch sphere spanned by the initial state and the final state of some quantum
algorithm (for example, Grover’s algorithm). In those examples (and in many others),
the entanglement and separability (and other quantum features) along various paths
on and inside the Bloch sphere can be analyzed, and the Bloch sphere itself can be

classified.
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It may be possible to extend our results into higher-rank mixed states: for example,
it is possible to look at “portions” of the higher-rank states (e.g., a non-degenerate
rank-3 state defines three Bloch spheres, each corresponding to two out of the three
eigenstates); and it is possible to analyze higher-rank states that are e-close (¢ < 1) to
rank-2 states.

Another relevant direction for extending our results into higher-rank mixed states is
finding ways to characterize the set of separable states in the relevant higher-dimensional
Hilbert subspace, without having the intuitive geometrical visualization on the Bloch
sphere. The definitions of the classes easily extend into higher dimensions (e.g.,
Classes 243 mean that the set of separable states is the set of all mixtures of two
linearly independent pure separable states; a possible generalization into higher dimen-
sions is a set of separable states that equals to the set of all mixtures of k linearly
independent pure separable states). As a trivial example, the 3-dimensional Hilbert sub-
space Span{|00),|01),|02)} C Ha ® H3 is completely separable, so it is a generalization
of Class 1. Lemmas 3.1-3.3 already apply to higher-rank mixed states; Corollaries 3.4-3.6
trivially apply to higher-rank mixed states and to higher-dimensional Hilbert subspaces
(without the geometrical visualization on the Bloch sphere); and Proposition 3.10 triv-
ially applies to higher-dimensional Hilbert subspaces of Ho ® Ho. However, generalizing
the examples presented in Section 3.5 (and their corresponding Propositions, 3.7 and 3.8)
and the full classification presented in Theorems 3.9 and 3.11 into higher-dimensional

Hilbert subspaces is not trivial and is left for future research.
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Chapter 4

Security Against Collective
Attacks of a Modified BB84

QKD Protocol with Information

only in One Basis

In this chapter, we prove the security against collective attacks of a protocol named
“BB84-INFO-z” that is slightly different from BB84, and we use the trace distance for
making the proof more composable than similar previous security proofs of BB84.

This chapter is based on the published conference paper [BLM17b].

4.1 Introduction

Quantum key distribution (QKD) protocols take advantage of the laws of quantum
mechanics, and most of them can be proven secure even against powerful adversaries
limited only by the laws of physics. The two parties (Alice and Bob) want to create a
shared random key, using an insecure quantum channel and an unjammable classical
channel (to which the adversary may listen, but not interfere). The adversary (eaves-
dropper), Eve, tries to get as much information as she can on the final shared key. The
first and most important QKD protocol is BB84 [BB84].

Boyer, Gelles, and Mor [BGMO09] discussed the security of the BB84 protocol against
collective attacks. Collective attacks [BM97b, BM97a, BBBT02] are a subclass of
the joint attacks; joint attacks are the most powerful theoretical attacks. [BGMO09]
improved the security proof of Biham, Boyer, Brassard, van de Graaf, and Mor [BBBT02]
against collective attacks, by using some techniques of Biham, Boyer, Boykin, Mor, and
Roychowdhury [BBBT06] (that proved security against joint attacks). In this chapter,
too, we restrict the analysis to collective attacks, because security against collective

attacks is conjectured (and, in some security notions, proved [Ren08, CKR09]) to imply
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security against joint attacks. In addition, proving security against collective attacks is
much simpler than proving security against joint attacks.

In many QKD protocols, including BB84, Alice and Bob exchange several types
of bits (encoded as quantum systems, usually qubits): INFO bits, that are secret bits
shared by Alice and Bob and are used for generating the final key (via classical processes
of error correction and privacy amplification); and TEST bits, that are publicly exposed
by Alice and Bob (by using the classical channel) and are used for estimating the error
rate. In BB84, each bit is sent from Alice to Bob in a random basis (the z basis or the
x basis).

In this chapter, we extend the analysis of BB84 done in [BGMO09] and prove the
security of a QKD protocol we shall name BB84-INFO-z. This protocol is almost
identical to BB84, except that all its INFO bits are in the z basis. In other words, the
x basis is used only for testing. The bits are thus partitioned into three disjoint sets:
INFO, TEST-Z, and TEST-X. The sizes of these sets are arbitrary (n INFO bits, n,
TEST-Z bits, and n, TEST-X bits).

We note that, while this chapter follows a line of research that mainly discusses
a specific approach of security proof for BB84 and similar protocols (this approach,
notably, considers finite-key effects and not only the asymptotic error rate), many other
approaches have also been suggested: see for example [May01, SP00, Ren08, RGKO05].

In the other papers ([BM97b, BM97a, BBBT02, BBB*06, BGM09]) that discussed
the same approach of security proofs as discussed here, the classical mutual information
between Eve and the final key was calculated and bounded, which caused problems with
composability (see definition in [Ren08] and in Section 2.4). In contrast to those papers,
in this chapter we suggest a method to partially avoid those problems: we calculate
and bound the trace distance between any two density matrices Eve may hold. This
method is more composable, because it bounds the distance between the quantum states
of Eve instead of bounding the classical information she has (bounding the classical
information means, in particular, that we assume that Eve measures at the end of the
protocol, while in reality she is not required to measure then, but is allowed to wait
until Alice and Bob use the final key). This method is implemented in this chapter
for the security proof of BB84-INFO-z; it also directly applies to the BB84 security
proof in [BGMO09], and it may be extended in the future to show that the BB84 security
proofs of [BGMO09], [BBB02], and [BBBT06] prove the composable security of BB84.

The “qubit space”, Ha, is a 2-dimensional Hilbert space. The states |0°), |1°) form
an orthonormal basis of Ho, called “the computational basis” or “the z basis”. The
states |01) £ % and [11) £ % form another orthonormal basis of Ha, called
“the x basis”. Those two bases are said to be conjugate bases. (Those notations are
useful for us in the current chapter, and they are used in [BGMO09] and in [BLM17b].
In the other chapters, [0°), [19),|0),|11) were denoted by |0), |1), |[+),|—), respectively.)

In this chapter, bit strings of some length ¢ are denoted by a bold letter (e.g.,

i=1d1...4 with 41,...,4; € {0,1}) and are identified to elements of the ¢-dimensional
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Fa-vector space FL, where Fy = {0, 1} and the addition of two vectors corresponds to
a XOR operation. The number of 1-bits in a bit string s is denoted by |s|, and the

Hamming distance between two strings s and s’ is dy(s,s’) = |s +§/|.

4.2 Formal Description of the BB84-INFO-z Protocol

Below we describe the BB84-INFO-z protocol used in this chapter.

1. Alice and Bob pre-agree on numbers n, n,, and n, (we denote N = n + n, + ng),
on error thresholds p, . and p, ., on a linear error-correcting code C' with an
r X n parity check matrix Pc, and on a linear key-generation function (privacy
amplification) represented by an m x n matrix Px. It is required that all the

r + m rows of the matrices Po and Pg put together are linearly independent.

2. Alice randomly chooses a partition P = (s,z,b) of the N bits by randomly
choosing three N-bit strings s,z,b € F} that satisfy |s| = n,|z| = n., |b| = n,,
and |s + z + b| = N. Thus, P partitions the set of indexes {1, 2, ..., N} into three

disjoint sets:

e [ (INFO bits, where s; = 1) of size n;
e T (TEST-Z bits, where z; = 1) of size n.; and
e Tx (TEST-X bits, where b; = 1) of size n,.

3. Alice randomly chooses an N-bit string i € FY and sends the N qubit states
\z’lil), |i32>, e \i%\’% one after the other, to Bob using the quantum channel. Notice
that the INFO and TEST-Z bits are encoded in the z basis, while the TEST-X bits
are encoded in the x basis. Bob keeps each received qubit in quantum memory,

not measuring it yet!.

4. Alice publicly sends to Bob the string b = by ...by. Bob measures each saved
qubit in the correct basis (namely, if b; = 0 then he measures the i-th qubit in the

z basis, and if b; = 1 then he measures it in the x basis).

The bit string measured by Bob is denoted by i”. If there is no noise and no

eavesdropping, then if =1i.

5. Alice publicly sends to Bob the string s. The INFO bits, used for generating the
final key, are the n bits with s; = 1, while the TEST-Z and TEST-X bits are the
n, + n, bits with s; = 0. The substrings of i, b that correspond to the INFO bits
are denoted by ig and bsg.

! Here we assume that Bob has a quantum memory and can delay his measurement. In practical
implementations, Bob usually cannot do that, but is assumed to measure in a randomly-chosen basis (z
or x), so that Alice and Bob later discard the qubits measured in the wrong basis. In that case, we
need to assume that Alice sends more than N qubits, so that N qubits are finally detected by Bob and
measured in the correct basis.
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6. Alice and Bob both publish their values of all the TEST-Z and TEST-X bits,
and they compare the bit values. If more than n, - p, . TEST-Z bits are different
between Alice and Bob or more than n, - p,, TEST-X bits are different between
them, they abort the protocol. We note that p, . and p,, (the pre-agreed error
thresholds) are the maximal allowed error rates on the TEST-Z and TEST-X bits,

respectively — namely, in each basis (z and x) separately.

7. Alice and Bob keep the values of the remaining n bits (the INFO bits, with s; = 1)
secret. The bit string of Alice is denoted x = ig, and the bit string of Bob is
denoted x5.

8. Alice sends to Bob the r-bit string & = XPCT , that is called the syndrome of x
(with respect to the error-correcting code C' and to its corresponding parity check
matrix Pg). By using &, Bob corrects the errors in his x? string (so that it is the

same as X).
9. Alice and Bob compute the m-bit final key k = XPI?.

The protocol is defined similarly to BB84 (and to its description in [BGM09]), except
that it uses the generalized bit numbers n, n,, and n, (numbers of INFO, TEST-Z,
and TEST-X bits, respectively); that it uses the partition P = (s, z, b) for dividing the
N-bit string i into three disjoint sets of indexes (I, Tz, and T’x); and that it uses two
separate thresholds (p, . and p, ) instead of one (pg).

4.3 Security Proof of BB84-INFO-z Against Collective At-
tacks

4.3.1 The General Collective Attack of Eve

Before the QKD protocol is performed (and, thus, independently of i and P), Eve
chooses some collective attack to perform. A collective attack is bitwise: each qubit is
attacked separately, by using a separate probe (ancillary state) that is attached by Eve
and saved by her in a quantum memory. Eve can keep her quantum probes indefinitely,
even after the final key is used by Alice and Bob; and she can perform, at any time of
her choice, an optimal measurement of all her probes together, chosen based on all the
information she has at the time of the measurement (including the classical information
sent during the protocol, and including the information she acquires when Alice and
Bob use the key).

Given the j-th qubit \i?j)T]. sent from Alice to Bob (1 < 5 < N), Eve attaches a
probe state \OE ) g; and applies some unitary operator U; of her choice to the compound
system [0%) g, |il;.j )1;- Then, Eve keeps to herself (in a quantum memory) the subsystem
E;, which is her probe state; and sends to Bob the subsystem T}, which is the qubit
sent from Alice to Bob (which may have been modified by her attack U;).
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The most general collective attack U; of Eve on the j-th qubit, represented in the

orthonormal basis {\Obj)Tj, |1bj>Tj}, is

) b . b, )

Ujl07) g, |0%) 7, = [Egh)m; [0%) 7, + | Eg) B, 11%) 7, (4.1)
. b . b, .

Uj‘OE>E]“1bJ>Tj = ‘E1€)>E]”0bJ>Tj + ’E1]1>Ej|1bJ>ij (4'2)

b; b, b; b, . .
where |Eq) g;, |Eg1) ;> |E1))E;, and |Ej7) g, are non-normalized states in Eve’s probe

system FE; attached to the j-th qubit.

We thus notice that Eve can modify the original product state of the compound
system, [0%) g, \i?j>Tj, into an entangled state (e.g., \E36>Ej 0% )7, +]E8{)Ej 1%)7,). Eve’s
attack may thus cause Bob’s state to become entangled with her probe. On the one
hand, this may give Eve some information on Bob’s state; on the other hand, this causes
disturbance that may be detected by Bob. The security proof shows that the information
obtained by Eve and the disturbance caused by Eve are inherently correlated: this is

the basic reason QKD protocols are secure.

4.3.2 Results from [BGMO09]

The security proof of BB84-INFO-z against collective attacks is very similar to the
security proof of BB84 itself against collective attacks, that was detailed in [BGMO09].
Most parts of the proof are not affected at all by the changes made to BB84 to get the
BB84-INFO-z protocol (changes detailed in Section 4.2 of the current chapter), because
those parts assume fixed strings s and b, and because the attack is collective (so the
analysis is restricted to the INFO bits).

Therefore, the reader is referred to the proof in Section 2 and Subsections 3.1 to 3.5
of [BGMO09], that applies to BB84-INFO-z without any changes (except changing the
total number of bits, 2n, to N, which does not affect the proof at all), and that will not
be repeated here.

We denote the rows of the error-correction parity check matrix P as the vectors

v1,...,0, in F§, and the rows of the privacy amplification matrix Pk as the vectors
Vpsl, - Uram. We also define, for every ', Vs £ Span{vi, ..., v }; and we define
drn = min  dy(vei1, V)= min  dyg. (4.3)
r<r’'<r+m r<r’'<r+m

For a 1-bit final key k£ € {0, 1}, we define pj, to be the state of Eve corresponding to
the final key k, given that she knows €. Thus,

~ ]- b/
Pk = on—r—1 Z Px (44)
x ‘ ng =¢
X Ury1 =k

where p,tc’, is Eve’s state after the attack, given that Alice sent the INFO bit string x
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encoded in the bases b’ = bg. In [BGMO09], the state p; was also defined: it is a lift-up
of pi, (which means that py is a partial trace of py), in which the states pgl appearing in
pr. are replaced by their purifications (see full definition in Subsection 3.4 of [BGMO09]).

In the end of Subsection 3.5 of [BGMO09], it was found that (in the case of a 1-bit
final key, i.e., m = 1)

1 d, —
5 tlpo =71 SQ\/P [\CI! > 2’1 | By =b',s], (4.5)

where Cj is the random variable corresponding to the n-bit string of errors on the n
INFO bits; By is the random variable corresponding to the n-bit string of bases of the
n INFO bits; b/ is the bit-flipped string of b’ = bg; and d,; (and, in general, d,,,,) was
defined above.

Now, according to [NC00, Theorem 9.2 and page 407], and using the fact that py is
a partial trace of py, we find that %tr lpo — p1| < %tr |po — p1|. From this result and
from inequality (4.5) we deduce that

dr,l
2

1 _
§tr|ﬁ0—/p\1| §2\/P |:|C[’ > ’ B; =D/, s|. (46)

4.3.3 Bounding the Differences Between Eve’s States

We define ¢ £ i + i®: namely, c is the XOR of the N-bit string i sent by Alice and of
the N-bit string i® measured by Bob. For each index 1 <1 < N, ¢; = 1 if and only if
Bob’s I-th bit value is different from the I-th bit sent by Alice. The partition P divides
the N bits into n INFO bits, n, TEST-Z bits, and n, TEST-X bits. The corresponding
substrings of the error string c are cs (the string of errors on the INFO bits), ¢, (the
string of errors on the TEST-Z bits), and cp, (the string of errors on the TEST-X bits).
The random variables that correspond to cs, ¢,, and cy, are denoted by Cy, Cr,, and
Cr, , respectively.

We define C; to be the random variable corresponding to the string of errors on the
INFO bits if Alice had encoded and sent the INFO bits in the x basis (instead of the z
basis dictated by the protocol). In those notations, inequality (4.6) reads as

1 ~ ~ - dr -~ d?“
§tr|p0—p1] SZ\/P |:|CI‘ > ol ’ 77:| :2\/P |:|C[ > 7’1 ’ Cz,Cb,P y (47)

2
using the fact that Eve’s attack is collective, so the qubits are attacked independently,
and, therefore, the errors on the INFO bits are independent of the errors on the TEST-Z
and TEST-X bits (namely, of ¢, and cy,).
As explained in [BGMO09], inequality (4.7) was not derived for the actual attack
U=U;®...0 Uy applied by Eve, but for a virtual flat attack (that depends on b and
therefore could not have been applied by Eve). That flat attack gives the same states
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po and pp as the original attack U, and gives a lower (or the same) error rate in the
conjugate basis. Therefore, inequality (4.7) also holds for the original attack U. This
means that, from now on, all our results apply to the original attack U rather than to
the flat attack.

So far, we have discussed a 1-bit key. We will now discuss a general m-bit key k.

We define py to be the state of Eve corresponding to the final key k, given that she

knows &:
~ 1 /
=g D, R (4.8)
ng =£
xP;; =k

Proposition 4.1. For any two m-bit keys k,k/,

%tr\ﬁk — Pl < 2m\/P [@y > dgm | cz,cb,P]. (4.9)
Proof. We define the key k;, for 0 < j < m, to consist of the first j bits of k' and the
last m — j bits of k. This means that kg = k, k;,, = k/, and k;_; differs from k; at
most on a single bit (the j-th bit).

First, we find a bound on %tr [Pk,_, — Pk;|: since k;_1 differs from k; at most on a
single bit (the j-th bit, given by the formula x - v,1 ), we can use the same proof that
gave us inequality (4.7), attaching the other (identical) key bits to & of the original
proof; and we find that

1 N ~ d;
5 1P = Pigl = 2\/P [|CI! > 5] | ¢z, P|, (4.10)

where we define d; as dp (vrj, V}), and V] £ Span{vi, V2, . . ., Vrtj—1, Urtjtls -« - s Urtpm }-
Now we notice that d; is the Hamming distance between v, ; and some vector in
Vj’ which means that d; = ’Z:i{n aivi‘ with a; € Fp and a,4; # 0. The properties of
Hamming distance assure us that d; is at least dg(v,v11, V;s) for some r < r<r+m.
Therefore, we find that d,,, = min,<, <,y dg(v41, Vi) < dj.
The result d,,, < d; implies that if IC;| > % then |C;| > dr{”. Therefore,

inequality (4.10) implies

1 . —~ d
5tr|pkj71 — Pk;| < 2\/P [\CI] > % | cz,cb,P} (4.11)

Now we use the triangle inequality for norms to find

1 1 1
5’51"|Pk—pk'\ = 5‘51"|Pko — Pk | < EQtf’ijl — Pk,
]:
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drm
§2m\/ {|C1|> 2 | cz,¢b,P|, (4.12)

as we wanted. O

The value we want to bound is the expected value of trace distance between two
states of Eve corresponding to two final keys. However, we should take into account
that if the test fails, no final key is generated, and the distance between all of Eve’s

states becomes 0 for any purpose. We thus define the random variable APa=Pa, ”’)(k k')

Eve
for any two final keys k, k':
PP [ |eb|
strlpk — pe| if < Pa,» and < Pa,
Ag‘;zezvpa z)(k kI|P7£7Cz,Cb) é 2 ‘ | n, a,z Ny a,r (413)

0 otherwise

We need to bound the expected value <A(p“‘z’p“’z)(k, k’)), that is given by:

Eve
(Afesred e k) = Y AR (kK |PL € cpen) - p(PLE Carep)  (4.14)
P£7CZ7Cb
Theorem 4.2.

(a1 < 2m [P [( 2 42 n (S22l <) 1 (B < )]
(4.15)

|C’| is the random wvariable corresponding to the error rate on the INFO bits if

where

. . C . . .
they had been encoded in the x basis, | n?' is the random variable corresponding to the

error rate on the TEST-Z bits, and % is the random variable corresponding to the
error rate on the TEST-X bits.

Proof. We use the convexity of 22, namely, the fact that for all {p;}; satisfying p; > 0
and ), p; = 1, it holds that (_, pz-:vl) <>, piz;. We find that:

<A](é7‘;zezypa z) (k k/)>

2
= Z Ag\?e27pal k k/|P Eacmcb) (P7£7CZ7Cb) (by (414))
P.E,cz,Cp
2
S Z (Agvaez’p“ (k,X'|P, E,Cmcb)) -p(P, €&, ¢z, Cp) (by convexity of )
P.&,cz,Cp
o~ ~ 2
= > (3 trlpx —piel)” (P, €, ez, cp) (by (4.13))
P&%Spa [ ‘<p
<dm’- P[IC1 = % | ey, P| - p(P,£ o) (by (4.9))

c
P&, ‘Zzzl <Pa,z, ‘ng‘ <pa,z
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= 4m? . Z P [‘(fi}’ > dTTm | Cz,Cb,'P} 'p(P,Cz,Cb)

P @<payz:%fpaw

‘ny — n

=am® 3 P[(IC1] = S ) A (S <) 4 (S <) 1 P] - 0(P)
5

= 4m?- P |(IC1] = %52 ) A (% < paz) A (% < pus) | (4.16)

z —=

as we wanted. O

4.3.4 Proof of Security

Following [BGM09] and [BBBT06], we choose matrices Po and Pk such that the

inequality dé';;” > Pa,z + € is satisfied for some e (we will explain in Subsection 4.3.6 why

this is possible). This means that

(2 5 (S )+ (S )
<P [(% > Pax +€> AN (‘CTZX' < pa,a/‘)} . (417)

We will now prove the right-hand-side of (4.17) to be exponentially small in n.

As said earlier, the random variable (TI corresponds to the bit string of errors on the
INFO bits if they had been encoded in the = basis. The TEST-X bits are also encoded
in the x basis, and the random variable Cr, corresponds to the bit string of errors on
those bits. Therefore, we can treat the selection of the indexes of the n INFO bits and
the n, TEST-X bits as a random sampling (after the numbers n, n,, and n, and the
indexes of the TEST-Z bits have all already been chosen) and use Hoeffding’s theorem
(that is described in Appendix A of [BGMO09]).

Therefore, for each bit string c; ... cn4n, that consists of the errors in the n + n,
INFO and TEST-X bits if the INFO bits had been encoded in the x basis, we apply
Hoeftfding’s theorem: namely, we take a sample of size n without replacement from the
population ¢, ..., ¢p4p, (this corresponds to the random selection of the indexes of
the INFO bits and the TEST-X bits, as defined above, given that the indexes of the
TEST-Z bits have already been chosen). Let X = % be the average of the sample

(this is exactly the error rate on the INFO bits, assuming, again, that the INFO bits had
% be the expectancy of X (this is
ICTX |

exactly the error rate on the INFO bits and TEST-X bits together). Then —=- < p, o
is equivalent to (n+ny)u—nX < ng-pg., and, therefore, to n- (X —p) > ng - (4 — paz)-

been encoded in the x basis); and let u =

This means that the conditions (% > Pagx + e) and (% < paw) rewrite to
J— n -
(X_“>€+pa,w_M)A<n'(X_:U)Zﬂ_pa,w>a (4.18)
T

which implies (1 + %) (X — p) > ¢, which is equivalent to X — u > —22—¢, Using

n+ng
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Hoeffding’s theorem (from Appendix A of [BGMO09]), we get:

C, C
(lr\ - ) . (lm . p)
n Ny

In the above discussion, we have actually proved the following Theorem:

2
n _ Ny 2
<P|X—p>—"—e|<e 2(s ) e
n -+ ng

P

(4.19)

Theorem 4.3. Let us be given 6 > 0, R > 0, and, for infinitely many values of n,
a family {v7,..., v ., } of linearly independent vectors in Fy such that § < d’“”%
and = < R. Then for any paz;pax > 0 and €sec > 0 such that pa g + €sec < g, and
for any n,n.,n, > 0 and two m,-bit final keys k, k', the distance between Eve’s states

corresponding to k and K’ satisfies the following bound:

n 2
(ALeepen) (1 1)) < 9R e () e (4.20)
In Subsection 4.3.6 we explain why the vectors required by this Theorem exist.

We note that the quantity (Ag’je’z’p “’“)(k,k’ )) bounds the expected values of the
Shannon Distinguishability and of the mutual information between Eve and the final
key, as done in [BGM09] and [BBB*06], which is sufficient for proving non-composable
security; but it also avoids composability problems: Eve is not required to measure
immediately after the protocol ends, but she is allowed to wait until she gets more
information; and equation (4.20) bounds the trace distance between any two of Eve’s

possible states.

4.3.5 Reliability

Security itself is not sufficient; we also need the key to be reliable (namely, to be the
same for Alice and Bob). This means that we should make sure that the number
of errors on the INFO bits is less than the maximal number of errors that can be
corrected by the error-correcting code. We demand that our error-correcting code can
correct n(pq,» + €rel) errors (we explain in Subsection 4.3.6 why this demand is satisfied).
Therefore, reliability of the final key with exponentially small probability of failure is
guaranteed by the following inequality: (as said, Cy corresponds to the actual bit string

of errors on the INFO bits in the protocol, when they are encoded in the z basis)

C C _of—nz )22
p K'n[’ > P,z +ere1> A <|nTZ < pw)] <e 2(7¥5s) neda (4.21)

z

This inequality is proved by an argument similar to the one used in Subsection 4.3.4:
the selection of the indexes of the INFO bits and the TEST-Z bits is a random partition
of n+n, bits into two subsets of sizes n and n., respectively (assuming that the indexes
of the TEST-X bits have already been chosen), and thus it corresponds to Hoeffding’s

sampling.
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Figure 4.1: The secure asymptotic error rates zone for BB84-INFO-z (below
the curve)

4.3.6 Security, Reliability, and Error Rate Threshold

According to Theorem 4.3 and to the discussion in Subsection 4.3.5, to get both security
and reliability we only need vectors {v{,...,v ., } satisfying both the conditions
of the Theorem (distance d’“’é% > g > Pax + €sec) and the reliability condition (the
ability to correct n(pqg,z + €re1) errors). Such families were proven to exist in Appendix E
of [BBBT06], giving the bit-rate:

Rgecret £ % =1 — H(2pax + 2€sec) — Ho <pa,z + €rel + i) (4.22)
where Hy(z) £ —xlogy(z) — (1 — 2)logy(1 — ).

Note that we use here the error thresholds p, . for security and p, . for reliability.
This is possible, because in [BBBT06] those conditions (security and reliability) on the
codes are discussed separately.

To get the asymptotic error rate thresholds, we require Rgecret > 0, and we get the
condition:

Hy(2pa,z + 2€sec) + Ho (pa,z + €rel + i) <1 (4.23)

The secure asymptotic error rate thresholds zone is shown in Figure 4.1 (it is below
the curve), assuming that % is negligible. Note the trade-off between the error rates
Da,> and pq . Also note that in the case p, . = paz, We get the same threshold as BB84
([BBBT06] and [BGMO09]), which is 7.56%.
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4.4 Conclusion

In this chapter, we have analyzed the security of the BB84-INFO-z protocol against
any collective attack. We have discovered that the results of BB84 hold very similarly
for BB84-INFO-z, with only two exceptions:

1. The error rates must be separately checked to be below the thresholds p, . and
Pa,e for the TEST-Z and TEST-X bits, respectively, while in BB84 the error rate
threshold p, applies to all the TEST bits together.

2. The exponents of Eve’s information (security) and of the failure probability of the
error-correcting code (reliability) are different than in [BGMO09], because different
numbers of test bits are now allowed (n, and n, are arbitrary). This implies that
the exponents may decrease more slowly (or more quickly) as a function of n.
However, if we choose n, = n, = n (thus sending N = 3n qubits from Alice to

Bob), then we get exactly the same exponents as in [BGMO09].

The asymptotic error rate thresholds found in this chapter allow us to tolerate a
higher threshold for a specific basis (say, the  basis) if we demand a lower threshold
for the other basis (z). If we choose the same error rate threshold for both bases,
then the asymptotic bound is 7.56%, exactly the bound found for BB84 in [BBB*06]
and [BGMO09].

We conclude that even if we change the BB84 protocol to have INFO bits only in the
z basis, this does not harm its security and reliability (at least against collective attacks).
This does not even change the asymptotic error rate threshold. The only drawbacks
of this change are the need to check the error rate for the two bases separately, and
the need to either send more qubits (3n qubits in total, rather than 2n) or get a slower
exponential decrease of the exponents required for security and reliability.

We thus find that the feature of BB84, that both bases are used for information,
is not very important for security and reliability, and that BB84-INFO-z (that lacks
this feature) is almost as useful as BB84. This may have important implications on the
security and reliability of other protocols that, too, use only one basis for information
qubits, such as [Mor98] and some two-way protocols [BKMO07, ZQL™09].

We also present a better approach for the proof, that uses the quantum distance
between two states rather than the classical information. In [BGMO09], [BBB102],
and [BBB'06], the classical mutual information between Eve’s information (after an
optimal measurement) and the final key was calculated (by using the trace distance
between two quantum states); although we should note that in [BGM09] and [BBB*06],
the trace distance was used for the proof of security of a single bit of the final key even
when all other bits are given to Eve, and only the last stages of the proof discussed
bounding the classical mutual information. In the current chapter, on the other hand,
we use the trace distance between the two quantum states until the end of the proof,

which avoids composability problems that existed in the previous works.
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Therefore, this proof makes a step towards making [BGMO09], [BBB*02], and [BBB*06]
prove composable security of BB84 (and, in particular, security even if Eve keeps her
quantum states until she gets more information when Alice and Bob use the key, rather
than measuring them at the end of the protocol). This approach also applies (similarly)
to the BB84 security proof in [BGMO09].

We note that this chapter strengthens the security proofs described in [BGMO09,
BBB102, BBBT06], both because it slightly generalizes them (from security of BB84 to
security of BB84-INFO-z) and because it makes them more composable. Those security
proofs have various advantages over other methods to prove security: first of all, they
are mostly self-contained, while other security proofs require many results from other
areas of quantum information (such as various notions of entropy needed for the security
proof of [Ren08, RGKO05], and entanglement purification and quantum error correction
needed for the security proof of [SP00]); second, they give tight finite-key bounds, unlike
several other methods (see details below); and finally, at least in some sense, they are
simpler than other proof techniques. On the other hand, their generality and their
asymptotic error-rate threshold (7.56%, rather than 11% given by [RGKO05, SP00]) are
yet to be improved by future research.

Our method for proving security gives explicit and tight finite-key bounds. In
contrast to this, the security proof of [SP00] gives only asymptotic results (for infinitely
long keys). For the security proof of [Ren08, RGKO05], it is proved today that for some
protocols (including BB84), one can get tight finite-key bounds that are the same as
the ones found by our method [TLGR12]; but at first that security method gave very
pessimistic bounds (by using the de Finetti theorem [Ren08, Ren07]), and later, the
bounds were improved for several protocols (including BB84) [SR08], but were still not
tight (see [TLGR12] for comparison).

We also note that the existence of many different proof techniques is important,
because some proofs may be more adjustable to various QKD protocols or to practical
scenarios; some proofs may be clearer to different readers with different backgrounds;
analyzing the differences between the proofs and between their obtained results may
lead to important insights on the strengths and weaknesses of various techniques; and
the existence of many proofs makes the security result more certain and less prone to

eIrors.
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Chapter 5
Summary

In this research we have used important basic notions of quantum information (en-
tanglement, the Bloch sphere, and the trace distance) for analyzing several research
problems, both in quantum information and in quantum cryptography. We have seen
the importance of those basic QIP notions from various perspectives.

We have provided a full geometrical analysis of entanglement and separability for all
the possible bipartite Bloch spheres — that is, for all the possible 2-dimensional Hilbert
spaces. We have seen that the possible sets of separable states in those Bloch spheres
belong to exactly five classes, and are not arbitrary convex sets. This finding, while
interesting by itself, may also be useful in the future for defining new entanglement
measures and for using the “Bloch sphere neighbors” of a rank-2 state in various
quantum procedures (e.g., entanglement purification and error correction).

We have also provided a proof of security against collective attacks for a new quantum
key distribution (QKD) protocol, named BB84-INFO-z. We have extended an existing
simplified security proof of BB84 against collective attacks [BGMO09] to also hold against
this different protocol. We have also used the trace distance, a geometrical distance
corresponding (for qubits) to Euclidean distance on the Bloch sphere, for improving the
composability of our security proof: while there are still some technical barriers blocking
our proof from reaching the full definition of composable security, our proof attains the
most important property of composability (a quantum near-indistinguishability between
different states of Eve). Moreover, it applies to the simplified proof of security against
collective attacks of [BGMO09], but it may extend to the proof of security against joint
attacks [BBBT06], which gives a reasonable finite-key analysis and is generally simpler
than many of the currently-existing composable security proofs (e.g., [RGK05, Ren08]).

5.1 Open Questions

Some questions raised by this research are left for the future. In particular, the
properties of the geometrical entanglement measures defined for Bloch spheres (defining

the entanglement measure of a state as its Euclidean distance, that is actually twice the
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trace distance, from the closest separable state in the Bloch sphere) are not discussed
and are left for future analysis; and so are potential improvements for entanglement
distillation and entanglement purification processes.

Other open questions left for the future are various possible extensions of our
partly-composable security proof of BB84-INFO-z against collective attacks. It may be
extended to joint attacks; it may be extended to fully composable security; it may be
extended to other protocols; and it may simplify and unify the currently-existing QKD
security proofs. Of course, like the other currently-existing full security proofs of QKD,
it does not fully model the realistic systems (which means that realistic systems do not
have their full security proved, and may have many loopholes); extending full security
proofs to realistic systems is another important open question in the area of security of
QKD.
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