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Abstract

The counter-intuitive features of Quantum Mechanics make it possible to solve problems

and perform tasks that are beyond the abilities of classical computers and classical

communication devices. The area of quantum information processing studies how

representing information by quantum states can help achieving such improvements.

In this research, we use basic notions of quantum information (mainly entanglement,

Bloch sphere, and geometrical distances between quantum states) for analyzing relations

of quantum states to each other and quantum cryptographic protocols.

Entanglement is an important feature of quantum states. Intuitively (and, partly,

inaccurately), entanglement represents quantum (non-classical) correlations between

several different quantum systems. Entanglement is one of the most important quantum

phenomena, and it has many uses in quantum information, quantum communication,

and quantum computing.

Some quantum states can be geometrically represented by the Bloch sphere: the

unit sphere in the three-dimensional Euclidean space. The “standard” quantum states,

to which the laws of Quantum Mechanics directly apply, are called pure states. Other

states are the mixed states: probability distributions (“mixtures”) of several pure states.

The points on the Bloch sphere are the pure states, and those inside the Bloch sphere

are the mixed states. This geometrical representation is useful and intuitive for many

purposes.

We provide a geometrical analysis of entanglement for all the quantum mixed states

of rank 2 (all the mixtures of exactly two pure states): for any such state (in any

dimension), we define a generalized Bloch sphere by using the two pure states, and we

analyze this state and its neighbor states inside this Bloch sphere. We look at the set of

non-entangled states (“separable states”) in the Bloch sphere and characterize it into

exactly five possible classes. We give examples for each class and prove that there are

no other classes. In addition, we suggest possible definitions of “entanglement measures”

by using the “trace distance” from the nearest separable state.

Many types of distances between quantum states can be defined. One of the most

useful distances is the trace distance, which bounds the “distinguishability” between

the states. The trace distance is very useful in quantum information and quantum

cryptography, and it also has a simple geometrical interpretation: it is half of the

Euclidean distance between the states in the Bloch sphere.
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Quantum key distribution (QKD) protocols make it possible for two participators to

achieve the classically-impossible task of generating a secret random shared key even

if their adversary is computationally unlimited. Several important QKD protocols,

including the first protocol of Bennett and Brassard (BB84), have their unconditional

security proved against adversaries performing the most general attacks in a theoretical

(idealized) setting. We discuss a slightly different protocol, named “BB84-INFO-z”,

and prove it secure against a broad class of attacks (the collective attacks). Moreover,

we make use of the “trace distance” for making our security proof more “composable”

than similar security proofs for BB84: namely, for making a step towards proving

that the secret key remains secret even when the two participators actually use it for

cryptographic purposes.

2



Chapter 1

Introduction

The area of quantum information processing (QIP) uses the laws of quantum physics to

perform tasks that are classically impossible (or hard).

In this chapter we discuss some of the basic notions of quantum information, that are

needed for the later chapters. See [NC00, Gru99, RP00, GMD02] for more background

and explanations regarding QIP.

1.1 Quantum States

In QIP, information is represented by quantum states. A quantum state is the state of a

specific physical system.

A Hilbert space is a vector space over the field C (the complex numbers) with an

inner product, that satisfies the “completeness” property (whose exact definition can be

found in standard textbooks, and that is satisfied by all finite-dimensional inner product

spaces). A quantum pure state is represented by |ψ〉, that is a normalized column vector

(namely, a column vector of norm 1) in the Hilbert space. In other words, the Hilbert

space is the set of all the possible quantum pure states of a system (including the

non-normalized states).

As an important example, the qubit Hilbert space is H2 , Span{|0〉, |1〉}, with |0〉
and |1〉 being two orthonormal vectors (namely, they are normalized and their inner

product is 0). Two other important states in H2 are |+〉 , |0〉+|1〉√
2

and |−〉 , |0〉−|1〉√
2

.

The most general qubit pure state is |ψ〉 = α|0〉+β|1〉, with α, β ∈ C and |α|2 + |β|2 = 1

(normalization condition). The qubit states are sometimes denoted by their vector

representations in the {|0〉, |1〉} basis: |0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
, |+〉 = 1√

2

(
1

1

)
,

|−〉 = 1√
2

(
1

−1

)
, and |ψ〉 =

(
α

β

)
.

Note that multiplying a pure state |ψ〉 by any global phase eiφ has no physical

significance. In other words, two pure states that differ only by a global multiplicative

phase eiφ are the same for all intents and purposes.
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The notation |ψ〉 (the column vector) is called ket. A related notation, 〈ψ|, is called

bra, and is a row vector. It is defined by 〈ψ| , [|ψ〉]† (namely, the bra is the conjugate

transpose of the ket). For example, if |ψ〉 = α|0〉+β|1〉, then 〈ψ| = α?〈0|+β?〈1| (where

α? is the complex conjugate of α); and, in vector notations, 〈ψ| =
(
α? β?

)
.

Given an orthonormal basis {|ψ1〉, |ψ2〉, . . . , |ψn〉}, the inner product of two pure

states |ψ〉 =
∑n

j=1 αj |ψj〉 and |φ〉 =
∑n

j=1 βj |ψj〉 is 〈ψ|φ〉 =
∑n

j=1 α
?
jβj . The norm of

|ψ〉 is |||ψ〉|| ,
√
〈ψ|ψ〉 =

√∑n
j=1 |αj |2.

1.1.1 Quantum Measurements

Quantum physics allows us to measure a quantum state |ψ〉 with respect to any

orthonormal basis {|ψ1〉, |ψ2〉, . . . , |ψn〉}. The possible measurement outcomes are all

the states “ψk” of this orthonormal basis; the probability of getting the outcome “ψk”

(corresponding to the quantum state |ψk〉) is pk = |〈ψk|ψ〉|2. Note that
∑n

k=1 pk =

〈ψ|ψ〉 = 1. Also note that the result “ψk” is a classical indicator that can be read and

used; we have not discussed the resulting quantum state after the measurement, but

we should note that the quantum state may be ruined (or change its state) by the

measurement operation itself.

For example, if the state |ψ〉 = α|0〉+β|1〉 is measured with respect to the orthonormal

basis {|0〉, |1〉}, then the result “0” is obtained with probability |〈0|ψ〉|2 = |α|2, and the

result “1” is obtained with probability |〈1|ψ〉|2 = |β|2.
More general types of measurements exist (see, e.g., in [NC00]), but they can all be

reduced to the set of quantum operations described in Section 1.5.

1.1.2 Unitary Operators

Quantum physics allows us to apply any unitary operator U : H → H on a quantum

state in the Hilbert space H.

Unitary operators are linear operators (namely, U [α|ψ〉+ β|φ〉] = αU |ψ〉+ βU |φ〉)
that satisfy U † = U−1. They preserve inner products and norms.

As an important example, the Hadamard operator on the qubit space is defined by

H = 1√
2

(
1 1

1 −1

)
: namely, H|0〉 = |+〉 and H|1〉 = |−〉. It also satisfies H|+〉 = |0〉

and H|−〉 = |1〉.

1.2 Bipartite and Multipartite Hilbert Spaces

1.2.1 Tensor Products of Hilbert Spaces

Suppose that we are given two physical systems, A and B, and that we want to represent

the compound system AB (that is comprised of the two subsystems A and B) as a

physical system. Suppose that the quantum state of subsystem A is represented by a

4



vector in the Hilbert space HA and that the quantum state of subsystem B is represented

by a vector in the Hilbert space HB.

In this case, the quantum state of the compound (bipartite) system AB is represented

by a vector in the tensor product Hilbert space HA ⊗HB. An orthonormal basis for

this Hilbert space can be obtained by taking the product of two orthonormal bases (of

HA and of HB): namely, if {|ψ1〉A, |ψ2〉A, . . . , |ψk〉A} is an orthonormal basis of HA and

{|φ1〉B, |φ2〉B, . . . , |φn〉B} is an orthonormal basis of HB, then an orthonormal basis of

HA ⊗HB is {|ψi〉A ⊗ |φj〉B | 1 ≤ i ≤ k, 1 ≤ j ≤ n}.
As an important example, if A and B are both qubit systems (namely, HA and

HB are both H2 = Span{|0〉, |1〉}), then the compound two-qubit system is represented

by H2 ⊗ H2 = Span{|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉}. A shorter notation is

H2 ⊗H2 = Span{|00〉, |01〉, |10〉, |11〉}.
The tensor product of three or more Hilbert spaces (giving a multipartite Hilbert

space) is defined in a similar way. For example, H2⊗H2⊗H2 (a tripartite Hilbert space

that is the three-qubit space) is Span{|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉}.

1.2.2 Tensor Products of Vectors

Given two Hilbert spaces, HA with orthonormal basis {|ψ1〉A, |ψ2〉A, . . . , |ψk〉A} and

HB with orthonormal basis {|φ1〉B, |φ2〉B, . . . , |φn〉B}, and given two vectors |ψ〉A ,∑k
j=1 αj |ψj〉A ∈ HA and |φ〉B ,

∑n
j=1 βj |φj〉B ∈ HB, the tensor product vector |ψ〉A ⊗

|φ〉B ∈ HA ⊗HB (or, using a short notation, |ψ〉A|φ〉B) is defined as

|ψ〉A|φ〉B ,
k∑
i=1

n∑
j=1

αiβj |ψi〉A|φj〉B. (1.1)

For example, given |ψ〉A = α|0〉A + β|1〉A ∈ H2 and |φ〉B = γ|0〉B + δ|1〉B ∈ H2, the

tensor product vector |ψ〉A|φ〉B ∈ H2 ⊗H2 is

|ψ〉A|φ〉B = αγ|00〉AB + αδ|01〉AB + βγ|10〉AB + βδ|11〉AB. (1.2)

An example is

|+−〉AB =

[
|0〉A + |1〉A√

2

]
⊗
[
|0〉B − |1〉B√

2

]
=

1

2
[|00〉AB − |01〉AB + |10〉AB − |11〉AB].

(1.3)

This definition is easily generalized to tensor products of three (or more) vectors:

for example,

|+0−〉ABC =

[
|0〉A + |1〉A√

2

]
⊗ |0〉B ⊗

[
|0〉C − |1〉C√

2

]
=

1

2
[|000〉ABC − |001〉ABC + |100〉ABC − |101〉ABC ]. (1.4)
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1.2.3 Tensor Products of Operators

Given two linear operators, U operating on the Hilbert space HA and V operating on

the Hilbert space HB, the linear operator U ⊗V operates on the Hilbert space HA⊗HB
and is defined as follows:

(U ⊗ V )(|ψ〉A ⊗ |φ〉B) = (U |ψA〉)⊗ (V |φB〉) (1.5)

(It extends by linearity to vectors that are not tensor products, such as |00〉AB+|11〉AB√
2

.)

For example, the tensor product of the Hadamard operator H with itself, denoted

H ⊗H or H⊗2, operates as follows:

H⊗2|00〉AB = |++〉AB (1.6)

H⊗2|01〉AB = |+−〉AB (1.7)

H⊗2|10〉AB = |−+〉AB (1.8)

H⊗2|11〉AB = |−−〉AB (1.9)

This definition is easily generalized to tensor products of three (or more) operators.

1.3 Quantum Entanglement of Pure States

A tensor product pure state (or separable pure state) in a bipartite Hilbert space

HA⊗HB is a tensor product of two states: in other words, it is of the form |ψ〉A⊗ |φ〉B
with |ψ〉A ∈ HA and |φ〉B ∈ HB.

Any other state in HA ⊗ HB (namely, any state that cannot be presented as

|ψ〉A ⊗ |φ〉B) is called entangled.

For example (two-qubit states): |+−〉AB is a product state, while |01〉AB−|10〉AB√
2

is

an entangled state.

Four important entangled two-qubit states (that form together an orthonormal basis

of H2 ⊗H2, called Bell basis or BMR basis) are:

|Φ±〉AB =
|00〉AB ± |11〉AB√

2
(1.10)

|Ψ±〉AB =
|01〉AB ± |10〉AB√

2
(1.11)

1.4 Quantum Mixed States

A quantum mixed state is a probability distribution over several pure states: namely, it

is a set {(|ψj〉, qj)}j of pairs, each pair consisting of a pure state |ψj〉 and of a probability

qj (with 0 < qj ≤ 1 and
∑

j qj = 1), such that the pure state |ψj〉 has a probability qj .

Unlike a pure state, a mixed state is not represented by a vector in Hilbert space.

It is represented by a density matrix: ρ =
∑

j qj |ψj〉〈ψj |, where qj is the probability

6



that the system is in the state |ψj〉. (This definition should not be confused with the

probabilities of measurement results.) In particular, the pure state |ψ〉 is represented by

the density matrix ρ = |ψ〉〈ψ|.

For example, if the system is prepared in the |0〉 state with probability 1
3 or in

the |+〉 state with probability 2
3 , then the quantum state of this mixing is the mixed

state ρ = 1
3 |0〉〈0| +

2
3 |+〉〈+|. It should be emphasized that those probabilities are of

the preparation, not of any measurement. For example, if the state is measured in the

{|0〉, |1〉} orthonormal basis, the probability of measuring “0” is 2
3 , and the probability of

measuring “1” is 1
3 ; if it is measured in the {|+〉, |−〉} basis, the probability of measuring

“+” is 5
6 , and the probability of measuring “−” is 1

6 . Notice that the probability of

measuring “0” is not 1
3 and that the probability of measuring “+” is not 2

3 .

Note that several different probability distributions may represent the same mixed

state: namely, the states they represent are physically the same (e.g., giving exactly

the same measurement results in all orthonormal bases). This happens if and only if

they are represented by equal density matrices. (A similar observation is that a global

phase eiφ for pure states has no physical significance; and, indeed, the two pure states

|ψ〉 and eiφ|ψ〉 are represented by equal density matrices, ρ = |ψ〉〈ψ|.) For example, the

completely mixed state ρ = 1
2 |0〉〈0|+

1
2 |1〉〈1| is the same as ρ = 1

2 |+〉〈+|+
1
2 |−〉〈−|, and

those two density matrices are equal.

A (normalized) density matrix satisfies three conditions: it is a Hermitian operator;

it is positive semidefinite; and it is normalized (that is, its trace equals 1). Those three

conditions are also sufficient: any matrix ρ satisfying them is a (normalized) density

matrix. The set of (normalized) density matrices corresponding to the Hilbert space H is

denoted by L(H) (this is also the set of mixed states that are mixtures of pure states from

the Hilbert space H). From those three conditions it follows that every (normalized) den-

sity matrix ρ can be presented as ρ =
∑

j λj |ψj〉〈ψj | (the spectral decomposition), where

λj ≥ 0,
∑

j λj = 1, and {|ψj〉}j is an orthonormal set (of eigenvectors). In other words,

for any mixed state we can choose a corresponding probability distribution over a set of

orthonormal states. For example, for ρ = 1
3 |0〉〈0|+

2
3 |+〉〈+|, the spectral decomposition is

ρ = 3+
√
5

6

[
2|0〉+(

√
5−1)|1〉√

10−2
√
5

] [
2〈0|+(

√
5−1)〈1|√

10−2
√
5

]
+ 3−

√
5

6

[
2|0〉−(

√
5+1)|1〉√

10+2
√
5

] [
2〈0|−(

√
5+1)〈1|√

10+2
√
5

]
, and

it is the unique decomposition of ρ as a mixture of orthonormal pure states; on the

other hand, the completely mixed state ρ = 1
2 |0〉〈0| +

1
2 |1〉〈1| = 1

2 |+〉〈+| +
1
2 |−〉〈−|

has an infinite number of decompositions as a mixture of orthonormal pure states,

because its eigenvalue (12) is degenerate – namely, it has two orthonormal eigenvectors

corresponding to the same eigenvalue.

The probability distribution in the definition of the mixed state represents the

“standard” (“classical”) notion of uncertainty, and not a quantum phenomenon; it simply

represents lack of knowledge. Nonetheless, mixed states naturally arise in many areas of

quantum information. Most notably, if a compound system AB is in an entangled pure

state, then the quantum state of each of the subsystems A and B is mixed. For example,

7



if the state of the system AB is the entangled pure state 1√
3
|0〉A|0〉B +

√
2
3 |1〉A|+〉B,

the quantum state of the subsystem B is the mixed state ρ = 1
3 |0〉B〈0|B + 2

3 |+〉B〈+|B
that we have seen before. Moreover, we note that the state of the system AB can also

be represented as
√

5
6 |+〉A

2|0〉B+|1〉B√
5

− 1√
6
|−〉A|1〉B; thus, the state of the subsystem B

can also be represented as ρ = 5
6

[
2|0〉B+|1〉B√

5

] [
2〈0|B+〈1|B√

5

]
+ 1

6 |1〉B〈1|B. This is another

example of multiple probability distributions corresponding to the same mixed state.

An important difference between a pure state and a mixed state should be noted:

for a pure state |ψ〉, there is an orthonormal basis (consisting of |ψ〉 and of states

orthonormal to it) such that if |ψ〉 is measured with respect to it, there is a specific

measurement result (|ψ〉) obtained for certain. This is never true for a mixed state ρ:

its measurement result is uncertain if measured with respect to any orthonormal basis.

If a mixed state ρ is measured with respect to an orthonormal basis {|ψ1〉, |ψ2〉, . . . , |ψn〉},
we get the result “ψk” with probability pk = 〈ψk| ρ |ψk〉. If we apply a unitary operator

U to a mixed state ρ, the resulting state is the mixed state UρU †.

1.5 Allowed Quantum Operations

The most general operations allowed by quantum physics for the Hilbert space H are:

1. applying any unitary operator U : H → H (see Subsection 1.1.2);

2. measuring the state with respect to some orthonormal basis (see Subsection 1.1.1);

3. adding a new (ancillary) subsystem; and

4. removing (ignoring and forgetting) a subsystem.

1.6 Quantum Key Distribution

Quantum Key Distribution (QKD) makes it possible for two legitimate parties, Alice

and Bob, to generate an information-theoretically secure key [BB84], that is secure

against any possible attack allowed by the laws of quantum physics. Alice and Bob use

an insecure quantum channel and an unjammable classical channel. The adversary Eve

may interfere with the quantum channel and is limited only by the laws of nature; she

may not, however, modify the data sent in the unjammable classical channel (she can

only listen to it).

QKD protocols achieve the classically-impossible goal of distributing a secret key

to two parties (Alice and Bob), in a way that is secure against all the possible attacks.

Moreover, the key shared by Alice and Bob remains secret even if weaknesses in the

devices (currently unknown to anyone, including the adversary) are discovered in the

future: namely, for the adversary Eve to find the key, she must attack when Alice and

Bob apply the protocol, and not later (while for encryption methods such as RSA, Eve
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may keep the ciphertext until she is able to find the private key, e.g., by factorizing a

large number).

The first QKD protocol was BB84 [BB84]. The BB84 protocol, operated by the two

parties Alice and Bob, consists of the following steps:

1. Alice sends to Bob N quantum states, all of them randomly chosen from the

following set: {|0〉, |1〉, |+〉, |−〉}

2. Bob measures all the received states; for each of the states, he chooses randomly

whether to measure it in the z basis {|0〉, |1〉} or in the x basis {|+〉, |−〉}. If Bob

measures in the z basis, he identifies |0〉 and |1〉 with certainty, but gets a random

result if |+〉 or |−〉 is sent; the converse is true for the x basis.

3. Now Alice and Bob each holds a (classical) bit string: Alice holds the list of bits

she sent (bit 0 corresponding to the states |0〉 and |+〉, and bit 1 corresponding to

the states |1〉 and |−〉), and Bob holds the list of bits he measured (with similar

interpretations as Alice). In addition, Alice knows the basis she used to send each

state, and Bob knows the basis he used to measure each state.

4. Alice and Bob reveal (by using the classical channel) their basis choices, and they

discard all the states that Bob measured in a basis different from the one sent by

Alice.

5. Alice and Bob reveal some random subset of their bit string (“TEST bits”),

compare the bits, and estimate the error rate. They abort the protocol if the error

rate is above a specified threshold (in BB84, the asymptotic threshold (for infinite

key-length) is 11% [RGK05, SP00]). They discard the revealed bits.

6. Now Alice and Bob keep only the string of bits that were measured by Bob in the

same basis they were sent by Alice (and that were not discarded): they are called

“INFO bits”. If there is no noise or eavesdropping, the INFO bits should be the

same for Alice and Bob.

7. Alice sends to Bob error correction information, and Bob corrects the errors in

his bit string, so that it is the same as Alice’s.

8. Alice and Bob perform a privacy amplification process, yielding a final key that is

identical for Alice and Bob and is fully secure against any eavesdropper.

Many QKD protocols have been proven fully (and unconditionally) secure in the

theoretical sense; see Section 2.4 for more details about the security of QKD.

However, practical implementations deviate from the theoretical descriptions, and

they may thus be insecure. Two important attacks that take advantage of this fact are the

“Photon Number Splitting” attack [BLMS00b, BLMS00a] and the “Bright Illumination”

attack [LWW+10]. The “Photon Number Splitting” attack takes advantage of the
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fact that in most practical implementations, Alice cannot generate only one-photon

pulses, but sometimes generates pulses of two (or more) photons: Eve can, under certain

conditions, get full information on the secret key without inducing errors. The “Bright

Illumination” attack uses a weakness of Bob’s detectors, existing in most practical

implementations, to get full information on the secret key without inducing errors.

Other QKD protocols, either similar to BB84 or ones that use different approaches,

have also been suggested, and in some cases have also been proven fully secure. In

particular, the “three-state protocol” [Mor98] uses only the three states {|0〉, |1〉, |+〉}
(with |+〉 being used only for testing, while |0〉 and |1〉 being used both for key-

generation and for testing), and it has been proven secure [FL06, BGLS07, Kra16];

the “classical Bob” protocol [BKM07] is a two-way protocol such that only Alice has

quantum capabilities and Bob has only classical capabilities, and it has been proven

robust [BKM07] (see Section 2.4 for the definition of robustness) and secure [Kra15];

and the “classical Alice” protocol [ZQL+09] is similar to “classical Bob” with Alice

being the classical participant instead of Bob, and it has been proven robust [BM11].

1.7 Structure of this Thesis

In Chapter 2, we present the definitions of several important notions in quantum

information, that are useful for this thesis: quantum entanglement of mixed states,

Bloch sphere, trace distance, and security of quantum key distribution (QKD).

In Chapter 3, we discuss the geometry of entanglement in the Bloch sphere: we

define a generalized notion of a Bloch sphere (corresponding to each 2-dimensional

Hilbert subspace, and to each rank-2 quantum mixed state), and we see that the pattern

of entanglement in each Bloch sphere always belongs to one of five classes.

In Chapter 4, we discuss a variant of the quantum key distribution (QKD) protocol

BB84 that we name BB84-INFO-z, and we prove that BB84-INFO-z is secure against

collective attacks. We use the notion of the trace distance for making the proof more

composable than similar proofs.
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Chapter 2

Preliminaries

In this chapter, we introduce several basic important notions of quantum information,

that are useful in later parts of this thesis.

2.1 Quantum Entanglement of Mixed States

We remember that L(HA ⊗HB) is the set of mixed states that are mixtures of pure

states from the bipartite Hilbert space HA ⊗HB.

A separable mixed state in L(HA⊗HB) is a mixture of tensor product pure states: in

other words, it can be represented as ρ =
∑

j qj |ψj〉A|φj〉B〈ψj |A〈φj |B, with |ψj〉A ∈ HA
and |φj〉B ∈ HB.

Any other state in L(HA ⊗HB) (namely, any state that cannot be presented as a

mixture of tensor product pure states) is called entangled.

For example: ρ = 1
2 |00〉AB〈00|AB + 1

2 |11〉AB〈11|AB is a separable two-qubit state.

Notice that entanglement is not the same as correlation: the state ρ = 1
2 |00〉AB〈00|AB+

1
2 |11〉AB〈11|AB above has the states of its two subsystems (A and B) correlated, but it

is not entangled, because this is only a classical correlation. Entanglement, on the other

hand, is a quantum phenomenon, representing only quantum correlations that have no

classical explanation.

Extensions of those definitions to the multipartite case are given in Section 3.9.

2.2 Bloch Sphere

The Bloch sphere, also known as the Poincaré sphere, is a geometrical representation of

the pure and mixed qubit states (namely, of the pure states in H2 and of their mixtures

in L(H2)). It is drawn in Figure 2.1.

The Bloch sphere is the unit sphere in the three-dimensional Euclidean space R3.
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Figure 2.1: Bloch sphere corresponding to the qubit Hilbert space H2

2.2.1 Representation of Pure States on the Bloch Sphere

There is a one-to-one correspondence between the normalized pure states in H2 and the

points on the Bloch sphere. Each point on the sphere is represented by the vector ~r in

spherical coordinates: (r, θ, φ), with r = 1. (We note that, as is standard in physics, the

angle θ is the angle between the vector ~r and the positive z axis, while the angle φ is the

angle between the projection of the vector ~r on the x− y plane and the positive x axis.)

The most general normalized pure state in H2 is:

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 (2.1)

(The global phase does not matter, so we can assume that the coefficient of |0〉 is real.)

This state (and any multiple by a global phase) corresponds to the point (1, θ, φ) in

spherical coordinates – namely, to the point ~r = (x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ)

in Cartesian coordinates.

We can find the density matrix corresponding to |ψ〉:

ρ = |ψ〉〈ψ| =

(
cos
(
θ
2

)
eiφ sin

(
θ
2

) )( cos
(
θ
2

)
e−iφ sin

(
θ
2

) )
=

(
cos2

(
θ
2

)
e−iφ cos

(
θ
2

)
sin
(
θ
2

)
eiφ cos

(
θ
2

)
sin
(
θ
2

)
sin2

(
θ
2

) )

=

(
1+cos θ

2
(cosφ−i sinφ) sin θ

2
(cosφ+i sinφ) sin θ

2
1−cos θ

2

)

=
1

2

(
1 + cos θ sin θ cosφ− i sin θ sinφ

sin θ cosφ+ i sin θ sinφ 1− cos θ

)

=
1

2

(
1 + z x− iy
x+ iy 1− z

)
(2.2)
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We thus see that the density matrix ρ of a pure state is directly determined by the

corresponding point (x, y, z) on the Bloch sphere. We will soon see that a similar

correspondence (by using the same equation) is obtained for the mixed states.

Examples

• For θ = 0, the obtained state is |0〉, corresponding to the +ẑ point on the Bloch

sphere.

• For θ = π, the obtained state is eiφ|1〉 (this is the same state for all φ, because a

global phase does not matter), corresponding to the −ẑ point on the Bloch sphere.

• For θ = π
2 , the obtained states are |0〉+e

iφ|1〉√
2

, corresponding to the points on the

Bloch sphere that are on the x−y plane. Examples of such states are |+〉 (obtained

for φ = 0) and |−〉 (obtained for φ = π).

Useful Property An important property satisfied by the Bloch sphere: two pure

states |ψ〉 and |φ〉 are orthogonal if and only if |ψ〉 and |φ〉 are connected by a diameter

in the Bloch sphere. See, for example, Figure 2.2.

Figure 2.2: A diameter connects any two orthogonal pure states on the
Bloch sphere.

2.2.2 Representation of Mixed States inside the Bloch Sphere

There is a one-to-one correspondence between the mixtures of states in H2 (namely, the

mixed qubit states in L(H2)) and the points inside the Bloch sphere.

We analyze a mixture of two pure states, ρ1 = q|ψ〉〈ψ|+ (1− q)|φ〉〈φ|, such that |ψ〉
is represented by the point ~rψ , (xψ, yψ, zψ) on the sphere and |φ〉 is represented by

the point ~rφ , (xφ, yφ, zφ) on the sphere. We represent this mixture ρ1 by the point

~rρ1 = q~rψ + (1 − q)~rφ inside the Bloch sphere: namely, by a point that is a convex

combination of the two points ~rψ and ~rφ (and, thus, that is on the line between them).

See Figure 2.3 for an illustration of this representation.
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Figure 2.3: A mixture of two states is represented by their convex
combination inside the Bloch sphere – namely, it is on the line between them.

We now show that, given the above representation, equation (2.2) holds also for

mixed states:

ρ1 = q|ψ〉〈ψ|+ (1− q)|φ〉〈φ|

=
q

2

(
1 + zψ xψ − iyψ
xψ + iyψ 1− zψ

)
+

1− q
2

(
1 + zφ xφ − iyφ
xφ + iyφ 1− zφ

)

=
1

2

(
1 + [qzψ + (1− q)zφ] [qxψ + (1− q)xφ]− i [qyψ + (1− q)yφ]

[qxψ + (1− q)xφ] + i [qyψ + (1− q)yφ] 1− [qzψ + (1− q)zφ]

)

=
1

2

(
1 + zρ1 xρ1 − iyρ1
xρ1 + iyρ1 1− zρ1

)
(2.3)

Equation (2.3) can be easily generalized to any mixture of states of any type (pure or

mixed): namely, the mixed state ρ =
∑

j qjρj is represented by the convex combination

point ~rρ =
∑

j qj~rρj .

We note that each density matrix corresponds to a unique point inside the Bloch

sphere. In particular, different probability distributions that correspond to the same

mixed state (and that are thus represented by the same density matrix) correspond

to a single point inside the Bloch sphere. For example, the completely mixed state

correponds to the origin (0, 0, 0), and it is an equal mixture of the states in any any

orthonormal basis: ρ = 1
2 |0〉〈0|+

1
2 |1〉〈1| =

1
2 |+〉〈+|+

1
2 |−〉〈−|, etc.

2.3 Trace Distance

The trace distance between two quantum states is, informally, a measure of their

distinguishability.
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2.3.1 Mathematical Definition and Interpretation

The trace distance of two states ρ and σ is defined as follows:

D(ρ, σ) ,
1

2
tr |ρ− σ| = 1

2
tr
√

(ρ− σ)†(ρ− σ) (2.4)

(Because |A| is defined as
√
A†A.)

This definition can be interpreted as follows [FvdG99]: since ρ− σ is a Hermitian

operator, it has a spectral decomposition ρ − σ =
∑

j λj |ψj〉〈ψj |, where λj ∈ R and

{|ψj〉}j is an orthonormal set. It also holds that (ρ− σ)† = ρ− σ. Therefore,

|ρ− σ| =
√

(ρ− σ)2 =

√√√√√
∑

j

λj |ψj〉〈ψj |

2

=

√∑
j

λ2j |ψj〉〈ψj | =
∑
j

|λj ||ψj〉〈ψj |,

(2.5)

and we find that

D(ρ, σ) ,
1

2
tr |ρ− σ| = 1

2

∑
j

|λj |. (2.6)

We conclude that the trace distance D(ρ, σ) is one half of the sum of absolute values

of the eigenvalues of ρ− σ.

2.3.2 Geometrical Interpretation for Qubits

In the case of qubit states (pure or mixed), there is a simple geometrical interpretation

for the trace distance: the trace distance between ρ and σ is one half of the Euclidean

distance between the points representing ρ and σ inside the Bloch sphere.

Following [NC00, page 404], we can prove this result as follows: according to

equation (2.3), if ρ and σ are represented by the points ~rρ = (xρ, yρ, zρ) and ~rσ =

(xσ, yσ, zσ) in the Bloch sphere, respectively, then ρ = 1
2

(
1 + zρ xρ − iyρ
xρ + iyρ 1− zρ

)
and

σ = 1
2

(
1 + zσ xσ − iyσ
xσ + iyσ 1− zσ

)
. Let us denote ∆~r = ~rρ − ~rσ. Therefore,

ρ− σ =
1

2

(
∆z ∆x− i∆y

∆x+ i∆y −∆z

)
. (2.7)

It can easily be verified that the eigenvalues of ρ−σ are λ± = ±1
2

√
∆x2 + ∆y2 + ∆z2.

Thus, according to equation (2.6),

D(ρ, σ) =
1

2

[
2 · 1

2

√
∆x2 + ∆y2 + ∆z2

]
=

1

2
|~rρ − ~rσ| . (2.8)

This idea is demonstrated in Figure 2.4.
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Figure 2.4: The trace distance between two qubit states is one half of their
geometrical distance in the Bloch sphere.

2.3.3 The Information-Theoretical Meaning of the Trace Distance

It can be proved [FvdG99, BBB+02] that the trace distance D(ρ, σ) between the

two quantum states ρ and σ upper-bounds the Shannon Distinguishability between

ρ and σ, that is defined as the classical mutual information between the random

variable T ,

0 The quantum state is ρ

1 The quantum state is σ
and the random variable X (the result of a

measurement), maximized over all the possible quantum measurements (including the

ones consisting of adding an ancillary state, performing a general unitary transformation,

and then measuring).

In other words, the trace distance upper-bounds the information that some party,

who holds some quantum state and does not know whether it is ρ or σ (it can be either

ρ or σ, with equal probabilities), can find by using a measurement.

For example: D(|0〉〈0|, |1〉〈1|) = 1, because the quantum states |0〉 and |1〉 can be

distinguished for certain by measuring in the {|0〉, |1〉} basis; and D(|0〉〈0|, |0〉〈0|) = 0,

because the quantum state |0〉 is equal to |0〉, so they cannot be distinguished from each

other at all.

2.4 Security Definitions of Quantum Key Distribution

Originally, a quantum key distribution (QKD) protocol, as defined in Section 1.6, was

defined to be secure if the (classical) mutual information between Eve’s information and

the final key, maximized over all the possible attack strategies and measurements by Eve,

is exponentially small in the number of qubits, N . Examples of security proofs of BB84

that use this security definition are [May01, BBB+06, SP00]. Those security proofs

used the observation that one cannot analyze the classical data held by Eve before

privacy amplification (as done in [BBCM95]), but must analyze the quantum state held

by Eve [BMS96]. In other words, they assumed that Eve could keep her quantum state

until the end of the protocol, and only then choose the optimal measurement (based on
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all the data she observed) and perform the measurement.

Later, it was noticed that this security definition may not be “composable”. In other

words, the final key is secure if Eve measures the quantum state she holds at the end

of the QKD protocol, but the proof does not apply to cryptographic applications (e.g.,

encryption) of the final key: Eve might gain non-negligible information after the key is

used, even though her information on the key itself was negligible. This means that the

proof is not sufficient for practical purposes. In particular, those applications may be

insecure if Eve keeps her quantum state until Alice and Bob use the key (thus giving

Eve some new information) and only then measures.

Therefore, a new notion of “(composable) full security” was defined [BOHL+05,

RGK05, Ren08] by using the trace distance (see Section 2.3), following universal com-

posability definitions for non-quantum cryptography [Can01, PW00]. Intuitively, this

notion means that the final joint quantum state of Alice, Bob, and Eve at the end of the

protocol is very close (namely, the trace distance is exponentially small in N) to their

final state at the end of an ideal key distribution protocol, that distributes a completely

random and secret final key to both Alice and Bob. In other words, if a QKD protocol

is secure, then except with an exponentially small probability, one of the two following

events happens: the protocol is aborted, or the secret key generated by the protocol is

the same as a perfect key that is uniformly distributed (i.e., each possible key having the

same probability), is the same for both parties, and is independent of the adversary’s

information.

Formally, ρABE is defined as the final quantum state of Alice, Bob, and Eve at the

end of the protocol (with Alice’s and Bob’s states being simply the “classical” states

|kA〉A and |kB〉B, where kA and kB are bit strings that are the final keys held by Alice

and Bob, respectively; note that usually kA = kB); ρU is defined as the complete mixture

of all the possible keys that are the same for Alice and Bob (namely, if the set of possible

final keys is K, then ρU = 1
|K|
∑

k∈K |k〉A|k〉B〈k|A〈k|B); and ρE is defined as some state

of Eve. For the QKD protocol to be fully (and composably) secure, it is required that

1

2
tr |ρABE − ρU ⊗ ρE | ≤ ε, (2.9)

where ε is exponentially small in N . Intuitively, ρABE is the actual joint state of Alice,

Bob, and Eve at the end of the QKD protocol; ρU is the ideal final state of Alice and

Bob (an equal mixture of all the possible final keys, that is completely uncorrelated

with Eve and is the same for Alice and Bob); and ρE is a state of Eve, uncorrelated

with the states of Alice and Bob.

Composable security of many QKD protocols, including BB84, has been proved [BOHL+05,

RGK05, Ren08].

A much weaker notion is the robustness of a QKD protocol [BKM07]. A QKD

protocol is completely robust if any nonzero information obtained by Eve on the INFO

string implies a nonzero probability that Alice and Bob find errors in the TEST bits.
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In other words, if a protocol is completely robust, then Eve cannot find any useful

information without causing errors that may be noticed by Alice and Bob. Robustness

does not imply full security (because one should prove that Alice and Bob can generate

a completely secret final key, by using error correction and privacy amplification, as

described in Section 1.6), but it is an important step towards proving security.
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Chapter 3

Geometry of Entanglement in the

Bloch Sphere

In this chapter, we classify all the possible Bloch spheres (and rank-2 states) into exactly

five classes, according to the set of separable states in the Bloch sphere.

This chapter is based on the published journal paper [BLM17a].

3.1 Introduction

Entanglement is a very important property of quantum states, relevant to the foun-

dations of quantum mechanics (e.g., the Einstein-Podolsky-Rosen paradox and Bell’s

inequality), as well as to quantum information, quantum communication (including

quantum teleportation and quantum cryptography), quantum computers and simulators,

and quantum many-body systems.

The relations between entanglement, partial transpose (defined in Section 3.2),

and non-classical correlations between the subsystems, are well-understood for pure

quantum bipartite states. However, for mixed quantum states there are still many

open questions. Even bipartite mixed states of rank 2 (namely, states that can be

written as ρ = q|ψ0〉〈ψ0|+ (1− q)|ψ1〉〈ψ1|, where 0 < q < 1, and |ψ0〉, |ψ1〉 are bipartite

orthonormal states and are the eigenstates of ρ), that are discussed in this chapter,

are not well-understood. Studying such states is thus a major challenge in the field of

mixed-state quantum entanglement.

It is known that if a mixed state does not have a positive partial transpose then it

is entangled and presents a nonlocal behavior [Per96]. However, one can find separable

states presenting a nonlocal behavior (e.g., [BDF+99]), and one can find entangled

states that have a positive partial transpose [HHH96, Hor97]; those states are bound

entangled, namely, their entanglement cannot be distilled [HHH98]. It was later proved

that bound entangled states cannot have rank 3 or less [HSTT03, CC08]. Therefore,

checking whether a specific rank-2 state is entangled is trivial: it is entangled if and

only if it does not have a positive partial transpose; however, in this chapter we discuss
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the problem of classifying each rank-2 state by checking which states in its Bloch-sphere

neighborhood (namely, in its corresponding Bloch sphere) are entangled.

Entanglement distillation (for pure states) [BBPS96] and entanglement purification

(for mixed states) [BBP+96] are processes of distilling Bell states (or other maximally

entangled states) from some copies of an initial state. An efficient protocol is known for

pure states, but not for mixed states. This provides another motivation for studying

and finding ways to fully characterize the simplest non-pure bipartite states (the rank-2

bipartite mixed states).

The notion of the Bloch sphere, also known as the Poincaré sphere, is a very useful

geometrical interpretation of a single qubit – namely, of the 2-dimensional Hilbert

space H2 (see Section 2.2 and Figure 2.1). We notice that H2 is isomorphic to any

2-dimensional (complex) subspace of a full Hilbert space. Therefore, given any 2-

dimensional Hilbert subspace H and its orthonormal basis {|ψ0〉, |ψ1〉}, we can define

a unique generalized Bloch sphere representing H (the uniqueness is up to a possible

rotation of the sphere; see Section 3.4): we represent |ψ0〉 by the north pole and |ψ1〉
by the south pole; all their superpositions (the pure states) are on the sphere; and all

the pure states’ mixtures (the mixed states) are inside the sphere. For example, H can

be the subspace spanned by the eigenstates |ψ0〉, |ψ1〉 of a given rank-2 mixed state

ρ = q|ψ0〉〈ψ0|+ (1− q)|ψ1〉〈ψ1|, as illustrated in Figure 3.1.

Figure 3.1: Bloch sphere of the 2-dimensional Hilbert space Span{|ψ0〉, |ψ1〉}

We define here the “Bloch-sphere entanglement” of a quantum rank-2 bipartite state.

This (informally) means that we define the sets of separable states and of entangled

states inside the unique Bloch sphere associated with this quantum state. We provide

some examples, and we prove that the five classes we present exhaust all the possibilities

of “Bloch-sphere entanglement”. We briefly discuss going beyond bipartite states, and

we briefly present an interesting exception (from the above classification) for the case of

just two qubits.

In Section 3.2 we explain the Peres-Horodecki entanglement criterion. In Section 3.3

we present a weaker entanglement criterion that we will use for proving our claims. In
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Section 3.4 we introduce several important properties of Bloch spheres to be used in

our proofs. In Section 3.5 we present a classification of all rank-2 states into five classes.

In Section 3.6 we present entanglement measures based on the Bloch sphere and on

the trace distance. In Section 3.7 we prove that no other classes exist. In Section 3.8

we prove that one of the classes does not exist in a specific case (the two-qubit case).

In Section 3.9 we generalize some of our results to multipartite entanglement. In

Section 3.10 we describe previous works in this area. In Section 3.11 we conclude.

3.2 The Peres-Horodecki Criterion

Given a system AB represented by the Hilbert space HA⊗HB , and given a mixed state

ρAB ∈ L(HA ⊗ HB) (namely, ρAB is a mixture of pure states in HA ⊗ HB), we can

represent ρAB as a matrix in the standard (computational) basis {|i〉A ⊗ |k〉B}i,k, as

ρAB =
∑
i,j,k,l

aijkl|i〉A〈j|A ⊗ |k〉B〈l|B, (3.1)

where the scalars aijkl ∈ C are the matrix elements. (Notice that in the proof of

Lemma 3.1, we define Cijkl , |i〉A〈j|A ⊗ |k〉B〈l|B, and thus we can represent ρAB as a

linear combination of Cijkl.)

We define the partial transpose of ρAB with respect to the subsystem B, denoted as

ρTBAB, as

ρTBAB ,
∑
i,j,k,l

aijkl|i〉A〈j|A ⊗ |l〉B〈k|B. (3.2)

In other words, we perform the “transpose” operation only on the subsystem B and not

on the subsystem A.

The Peres-Horodecki criterion [Per96, HHH96] says that if for a state ρ of the

system AB, the operator ρTB is not positive semidefinite (namely, if it has a negative

eigenvalue), then ρ is entangled.

It was shown in [HHH96] that for systems of dimensions 2 ⊗ 2, 2 ⊗ 3, or 3 ⊗ 2, ρ

is entangled if and only if ρTB is not positive semidefinite. This was also proved to

be true for states of rank 3 or less [HSTT03, CC08]. However, in higher dimensions

and higher ranks there are entangled states (that are bound entangled states, namely,

their entanglement cannot be distilled) that have a positive partial transpose [HHH96,

Hor97, BDM+99].

3.3 A Weaker Entanglement Criterion

We will use this weaker entanglement criterion for proving our claims:

Lemma 3.1. Let ρAB be a state of a bipartite system. If there are states |φA〉, |φB〉,
|ψA〉, and |ψB〉 such that 〈φAφB| ρAB |φAφB〉 = 0 and 〈φAψB| ρAB |ψAφB〉 6= 0, then
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ρAB is entangled.

Proof. Let ρ = ρAB , |φ〉 = |φAφ?B〉, and |ψ〉 = |ψAψ?B〉, where |φ?B〉 and |ψ?B〉 are obtained

from |φB〉 and |ψB〉 by replacing their amplitudes in the standard (computational) basis

by their complex conjugates: if |φB〉 =
∑

j αj |j〉, then |φ?B〉 =
∑

j α
?
j |j〉. We note that

〈k|φ?B〉 = α?k = 〈φB|k〉 and that 〈φ?B|l〉 = αl = 〈l|φB〉.
We first need a property of ρTB . By definition, the partial transpose of Cijkl =

|i〉〈j| ⊗ |k〉〈l| is CTBijkl = |i〉〈j| ⊗ |l〉〈k|, and the partial transpose ρTB of ρ is obtained by

a linear extension. Therefore, for Cijkl it holds that

〈φAφ?B|C
TB
ijkl |ψAψ

?
B〉 = 〈φA|i〉〈j|ψA〉〈φ?B|l〉〈k|ψ?B〉

= 〈φA|i〉〈j|ψA〉〈ψB|k〉〈l|φB〉

= 〈φAψB|Cijkl |ψAφB〉 , (3.3)

and by linearity,

〈φAφ?B| ρTB |ψAψ?B〉 = 〈φAψB| ρ |ψAφB〉 . (3.4)

If the condition of the Lemma is satisfied, then 〈φAφ?B| ρTB |φAφ?B〉 = 〈φAφB| ρ |φAφB〉 =

0 and 〈φAφ?B| ρTB |ψAψ?B〉 = 〈φAψB| ρ |ψAφB〉 6= 0. From Lemma 3.2 it follows that ρTB

is not positive semidefinite. Therefore, by the Peres-Horodecki criterion, ρ is entangled.

We declare this Lemma to be a “weaker” criterion because it proves entanglement only

for a subclass of all the states satisfying the Peres-Horodecki criterion.

Lemma 3.2. If a Hermitian operator A is positive semidefinite and 〈φ|A |φ〉 = 0, then

〈φ|A |ψ〉 = 0 for all |ψ〉.

Proof. Because A is a Hermitian operator, it has a spectral decomposition: A =∑
i λi|i〉〈i| with λi ≥ 0 (because A is positive semidefinite). It thus holds that

0 = 〈φ|A |φ〉 =
∑
i

λi〈φ|i〉〈i|φ〉 =
∑
i

λi|〈φ|i〉|2. (3.5)

Therefore, for any i satisfying λi 6= 0, it must hold that 〈φ|i〉 = 0. It follows that

〈φ|A |ψ〉 =
∑
i

λi〈φ|i〉〈i|ψ〉 = 0 (3.6)

for all |ψ〉.

Lemma 3.2 was presented earlier in a conference [BM14, BBM17].

3.4 Properties of Subspaces and Bloch Spheres

In the next sections, we also use the following results, that were also proved in [Hor97,

HJW93] and mentioned in [OSU08]:
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Lemma 3.3. Let H′ be a subspace of a Hilbert space H. Let ρ ∈ L(H′) (i.e., ρ can be

decomposed as a mixture of pure states from H′). If ρ =
∑

j qj |φj〉〈φj | is a decomposition

of ρ with |φj〉 ∈ H and qj > 0, then |φj〉 ∈ H′ for all j.

Proof. Let {|ψi〉}i∈I′ be an orthonormal basis of the Hilbert space H′. Since H′ ⊆ H,

we can extend this orthonormal basis to an orthonormal basis {|ψi〉}i∈I of H (where

I ′ ⊆ I). Since ρ ∈ L(H′), and since |ψi〉 is orthogonal to H′ for all i ∈ I \ I ′, it holds

that 〈ψi| ρ |ψi〉 = 0 for all i ∈ I \ I ′.
For all j, because |φj〉 ∈ H, we can present |φj〉 =

∑
i∈I aji|ψi〉, with aji = 〈ψi|φj〉.

Then for all i ∈ I \ I ′,

0 = 〈ψi| ρ |ψi〉 =
∑
j

qj〈ψi|φj〉〈φj |ψi〉 =
∑
j

qj |〈ψi|φj〉|2 =
∑
j

qj |aji|2. (3.7)

Since qj > 0 for all j, this implies that aji = 0 for all j and i ∈ I \ I ′. Therefore, for all

j, it holds that |φj〉 =
∑

i∈I′ aji|ψi〉, which means that |φj〉 ∈ H′.

Corollary 3.4. If a rank-2 mixed state ρ is inside a specific Bloch sphere, then all the

pure states in all of its decompositions lie on the same Bloch sphere.

Proof. If ρ is inside a specific Bloch sphere that represents the 2-dimensional Hilbert

space H′, then it can be represented as a mixture of pure states in H′. Let us be given

any decomposition of ρ as a mixture of pure states in some Hilbert space H (that can

be assumed, without limiting generality, to have H′ as a subspace), ρ =
∑

j qj |φj〉〈φj |.
According to Lemma 3.3, it holds that |φj〉 ∈ H′ for all j – namely, all the pure states

in this decomposition are in H′, and therefore they are on the same Bloch sphere.

By using Corollary 3.4, we get:

Corollary 3.5. If ρ is a rank-2 mixed state, then it lies inside a unique Bloch sphere

(the uniqueness is up to a possible rotation of the sphere).

Proof. ρ lies inside the Bloch sphere that is spanned by its two eigenstates; we now

denote this Bloch sphere as B. According to Corollary 3.4, all the other pure states in

all the other decompositions of ρ lie on B. Since all the Bloch spheres that contain ρ

include at least two linearly independent pure states that are in a decomposition of ρ,

and since those pure states are on B and thus span B (up to some rotation), we conclude

that all the Bloch spheres containing ρ are the same as B (up to some rotation).

Corollary 3.6. If a rank-2 mixed state ρ is separable, then there exist at least two

different pure separable states on its unique Bloch sphere.

Proof. If ρ is separable, then it can be decomposed as a mixture of at least two pure

states that are tensor product (separable) states. According to Corollary 3.4, those pure

states lie on its unique Bloch sphere (that exists according to Corollary 3.5).
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3.5 Classification of Bloch-Sphere Entanglement

In the rest of this chapter we use Lemma 3.1 (a “weaker entanglement criterion”),

Lemma 3.2 (a “positive semidefinite operators condition”), Corollary 3.5 (the “unique-

Bloch-sphere corollary”), and Corollary 3.6 (a “separable states condition”) in order to

provide a classification of Bloch-sphere entanglement. This is based on the following

understanding: if ρ is a bipartite rank-2 mixed state that is a mixture of pure states in

the Hilbert space HA⊗HB, then according to Corollary 3.5, it lies inside a unique Bloch

sphere (the uniqueness is up to a possible rotation); and this Bloch sphere corresponds

to a 2-dimensional subspace of HA ⊗HB.

We present five different classes of 2-dimensional subspaces of a bipartite system,

that are distinguished by their Bloch-sphere entanglement: (It is sufficient to consider

only examples for which HA is 2-dimensional (H2) and HB is either 2-dimensional (H2)

or 3-dimensional (H3).)

1. No entanglement at all

Example in H2 ⊗H2: Span{|00〉, |01〉} (Figure 3.2)

2. Entanglement everywhere on and inside the sphere except a line (of separable

states) connecting two orthogonal pure states on the sphere (e.g., the poles)

Example in H2 ⊗H2: Span{|00〉, |11〉} (Figure 3.3)

3. Entanglement everywhere on and inside the sphere except a line (of separable

states) connecting two non-orthogonal pure states on the sphere

Example in H2 ⊗H2: Span{|00〉, |++〉} (Figure 3.4)

4. Entanglement everywhere on and inside the sphere except a single separable point

on the sphere

Example in H2 ⊗ H2: Span{|00〉, α|01〉 + β|10〉} with αβ 6= 0 (Figure 3.5 and

Proposition 3.7)

5. Entanglement everywhere (“completely entangled subspace”)

Example in H2 ⊗H3: Span
{
|00〉+|11〉√

2
, |02〉+|10〉√

2

}
(Figure 3.6 and Proposition 3.8)

Does not exist in H2 ⊗H2. (Proof is given in Section 3.8, as Proposition 3.10.)

Very similar examples can be found in all the bipartite Hilbert spaces (if the

dimensions of both subsystems are at least 2), except the example to Class 5, that does

not exist in H2 ⊗H2.

The analysis of Classes 1-3 (see Figures 3.2-3.4) is very simple and follows directly

from the proof of the general Theorem 3.9. Generally speaking, if two pure separable

states exist on the Bloch sphere, then it belongs to one of those classes.

We now analyze the example for Class 4 (see Figure 3.5), a class that we found, yet

was also found independently by [RA16a].
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Figure 3.2: Bloch sphere of the example for Class 1: all the states on and inside
this Bloch sphere are separable.

Figure 3.3: Bloch sphere of the example for Class 2: all the states along the line
connecting |00〉 and |11〉 are separable; all the other states on and inside this Bloch
sphere are entangled. Any two orthogonal product states can replace |00〉 and |11〉.
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Figure 3.4: Bloch sphere of the example for Class 3: all the states along the line
connecting |00〉 and |++〉 are separable; all the other states on and inside this Bloch

sphere are entangled. Any two non-orthogonal linearly independent product states can
replace |00〉 and |++〉.

Proposition 3.7. Let |ψ0〉 = |00〉 and |ψ1〉 = α|01〉+β|10〉 with αβ 6= 0, |α|2+|β|2 = 1.

The state ρ = a00|ψ0〉〈ψ0|+ a01|ψ0〉〈ψ1|+ a10|ψ1〉〈ψ0|+ a11|ψ1〉〈ψ1| is separable if and

only if a01 = a10 = a11 = 0.

Proof. We look at two possible cases:

1. If a11 6= 0, then:

〈11| ρ |11〉 = 0 (3.8)

〈10| ρ |01〉 = a11〈10|ψ1〉〈ψ1|01〉 = a11βα
? 6= 0 (3.9)

Therefore, according to Lemma 3.1 (the “weaker entanglement criterion”), ρ is

entangled.

2. If a11 = 0, then:

〈ψ1| ρ |ψ1〉 = a11 = 0 (3.10)

〈ψ1| ρ |ψ0〉 = a10 (3.11)

Therefore, according to Lemma 3.2 (a “positive semidefinite operators condition”),

because ρ is positive semidefinite, it must hold that a10 = 0. This implies that

a01 = a?10 = 0. Therefore, a01 = a10 = a11 = 0.

We conclude that if ρ is separable, it must hold that a11 = 0 (otherwise, ρ would be

entangled), and thus a01 = a10 = a11 = 0. On the other hand, if ρ is entangled, a11 6= 0.

This concludes our proof.

Finally, for the example of Class 5 (see Figure 3.6):
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Figure 3.5: Bloch sphere of the example for Class 4: only the state |00〉 is
separable; all the other states on and inside this Bloch sphere are entangled.

Proposition 3.8. Let |ψ0〉 = |00〉+|11〉√
2

and |ψ1〉 = |02〉+|10〉√
2

. The state ρ = a00|ψ0〉〈ψ0|+
a01|ψ0〉〈ψ1|+ a10|ψ1〉〈ψ0|+ a11|ψ1〉〈ψ1| is always entangled.

Proof. By using Corollary 3.6 (the “separable states condition”), it is sufficient to prove

that all the pure states |ψ〉 = α|ψ0〉 + β|ψ1〉 are entangled: if all the pure states on

the Bloch sphere are entangled, then all the mixed states inside the Bloch sphere are

entangled.

Let us look at the state

|ψ〉 = α|ψ0〉+ β|ψ1〉

=
α√
2
|00〉+

α√
2
|11〉+

β√
2
|02〉+

β√
2
|10〉

,
∑
i,j

εij |i〉|j〉. (3.12)

Assume by contradiction that |ψ〉 is separable. In this case, there must exist a0, a1 and

b0, b1, b2 such that |ψ〉 =
(∑1

i=0 ai|i〉
)
⊗
(∑2

j=0 bj |j〉
)

, and, therefore, εij = aibj for all

i, j. This means that the equations ε01 = a0b1 = 0 and ε12 = a1b2 = 0 must hold.

We notice that if a0 = 0, then α = β = 0, and that if b1 = 0, then α = 0. Therefore,

from the equation ε01 = a0b1 = 0 we deduce that α = 0. Similarly, from the equation

ε12 = a1b2 = 0 we deduce that β = 0. Therefore, we see that α = β = 0, which is

impossible.

We conclude that there are no separable pure states on the Bloch sphere. Therefore,

by Corollary 3.6, there cannot be separable mixed states inside the Bloch sphere.
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Figure 3.6: Bloch sphere of the example for Class 5: all the states on and inside
this Bloch sphere are entangled.

3.6 Entanglement Measures inside the Bloch Sphere

Our classification suggests natural ways to measure entanglement inside the Bloch

sphere: for example, entanglement may be measured by the Euclidean distance to

the closest separable state (e.g., given the Bloch sphere Span{|00〉, |11〉}, the closest

separable state to the pure state α|00〉+ β|11〉 is the state |α|2|00〉〈00|+ |β|2|11〉〈11|) –

namely, by twice the trace distance to the closest separable state. We note that this

entanglement measure, unlike the measures analyzed by [LOSU06, OSU08], vanishes

only for separable states. Analyzing the properties of such measures is beyond the scope

of this work.

3.7 A Proof that There are Exactly Five Classes of “Bloch-

Sphere Entanglement”

Our main goal is to provide a full analysis of the general bipartite case. We prove that

the classes we found are the only classes that exist in the bipartite case, for all the

rank-2 bipartite states (namely, for all the corresponding 2-dimensional Hilbert spaces):

Theorem 3.9. Let H be a 2-dimensional subspace of HA⊗HB, where HA and HB are

two Hilbert spaces. Then H belongs to one of the following classes:

Class 1 The Bloch ball of H is completely separable.

Classes 2+3 The Bloch ball of H has one line of separable states, and all the other

states are entangled.

Class 4 The Bloch ball of H has one separable point (pure state), and all the other

states are entangled.
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Class 5 The Bloch ball of H is completely entangled.

(We note that Class 2 and Class 3 are discussed together, because in both of them the

Bloch ball has just one line of separable states.)

Proof. First, assume that there is no separable mixed state inside the Bloch ball. This

means that there is at most one pure separable state on the Bloch sphere (because if

two pure states are separable, then the line connecting them inside the Bloch ball is

separable, too). This matches Classes 4 and 5.

Now assume that there is a separable mixed state ρ inside the Bloch ball. According

to Corollary 3.6 (the “separable states condition”), this means that there are at least two

different pure separable states on the Bloch sphere. We denote them by |ψ〉 = |ψA〉⊗|ψB〉
and |φ〉 = |φA〉 ⊗ |φB〉.

We note that |ψ〉 � |φ〉 (defining the symbol ∼= to be “equality as normalized states,

possibly with different global phases”; thus, the symbol � means that the two normalized

states are really different, as opposed to states that are equal up to a global phase),

which means that |ψ〉 and |φ〉 are linearly independent. Therefore, the Bloch sphere

represents the 2-dimensional subspace Span{|ψ〉, |φ〉}, which means that all the mixed

states inside the Bloch ball are of the form:

ρ = a00|ψ〉〈ψ|+ a01|ψ〉〈φ|+ a10|φ〉〈ψ|+ a11|φ〉〈φ| (3.13)

If |ψA〉 ∼= |φA〉 or |ψB〉 ∼= |φB〉, then obviously all the states on and inside the Bloch

sphere are separable, which matches Class 1.

If |ψA〉 � |φA〉 and |ψB〉 � |φB〉, then we prove that only the line connecting |ψ〉 and

|φ〉 inside the Bloch ball is separable, and that all the other pure and mixed states in

the Bloch ball are entangled. This will match Classes 2+3, and will conclude our proof.

We look at all the mixed states of the form (3.13). If a01 = a10 = 0, then we

obviously get a separable state:

ρ = a00|ψA〉〈ψA| ⊗ |ψB〉〈ψB|+ a11|φA〉〈φA| ⊗ |φB〉〈φB| (3.14)

If a10 6= 0, then: let |φA〉 ∈ HA satisfy 〈φA|φA〉 = 0 and 〈ψA|φA〉 6= 0 (|φA〉 always

exists, because |ψA〉 � |φA〉). Similarly, let |ψA〉 ∈ HA and |φB〉, |ψB〉 ∈ HB satisfy

similar properties (because |ψB〉 � |φB〉). Then

〈
ψA φB

∣∣ ρ ∣∣ψA φB〉 = 0, (3.15)

and

〈
ψA ψB

∣∣ ρ ∣∣φA φB〉 = a10〈ψA ψB|φAφB〉〈ψAψB|φA φB〉

= a10〈ψA|φA〉〈ψB|φB〉〈ψA|φA〉〈ψB|φB〉

6= 0. (3.16)
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Therefore, by Lemma 3.1 (the “weaker entanglement criterion”), if a10 6= 0 (or

a01 6= 0 – this is equivalent, because a01 = a?10), then ρ is entangled.

We conclude that only the line between |ψ〉 and |φ〉 (i.e., the line of states satisfying

a01 = a10 = 0) is separable, and that the other states (i.e., the states satisfying a10 6= 0

or a01 6= 0) are entangled, which matches Classes 2+3. This concludes our proof.

3.8 A Proof that Class 5 Does Not Exist in the Two-Qubit

Case

We have seen that for almost all the bipartite Hilbert spaces, five classes appear. We

now show that for the Hilbert space H2 ⊗H2, only four classes exist (Classes 1-4):

Proposition 3.10. No 2-dimensional subspace of H2 ⊗H2 is completely entangled.

Proof. This proof follows the methods of [OSU08]. For a two-qubit state |ψ〉 =∑
i,j aij |i〉|j〉, the entanglement measure named “concurrence”, that is denoted by

C, is defined as follows [HW97, Woo01]:

C(ψ) = 2|a00a11 − a01a10| (3.17)

In particular, C(ψ) = 0 if and only if |ψ〉 is separable. (This is not necessarily true for

other entanglement measures.)

Let H , Span{|ψ0〉, |ψ1〉} be a 2-dimensional subspace of H2⊗H2. Let us represent:

|ψ0〉 = a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉 (3.18)

|ψ1〉 = b00|00〉+ b01|01〉+ b10|10〉+ b11|11〉 (3.19)

We may assume that C(ψ1) 6= 0 (otherwise, |ψ1〉 is separable, hence H cannot be

completely entangled). Therefore, the set of separable pure states in H (if we ignore

normalization) is the set of non-normalized states |ψ0〉+ z|ψ1〉 satisfying the equation

C(|ψ0〉+ z|ψ1〉) = 0, (3.20)

that rewrites as

2|(a00 + b00z)(a11 + b11z)− (a01 + b01z)(a10 + b10z)| = 0, (3.21)

or, removing the absolute value, as

2[(a00 + b00z)(a11 + b11z)− (a01 + b01z)(a10 + b10z)] = 0. (3.22)

This is a quadratic equation in the complex variable z. The coefficient of z2 is

2[b00b11 − b01b10], whose absolute value is C(ψ1) 6= 0. Therefore, according to the
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fundamental theorem of algebra, there are two solutions ξ1, ξ2 ∈ C (possibly equal) to

this equation. Thus, the non-normalized state |ψ0〉+ ξ1|ψ1〉 in H (and its normalization

in H) must be separable. Therefore, there is a separable state in H, and H cannot be

completely entangled.

3.9 Examples and Analysis of Multipartite Entanglement

For multipartite states, there are several different definitions of separability and entan-

glement: an m-partite mixed state is “fully separable” if it is a mixture of pure states

that are products of m pure states; and it is “separable with respect to a bipartite

partition P” (with P partitioning the m subsystems into two disjoint sets) if the bipartite

state corresponding to the partition P is separable [HHHH09]. For example, the state

|0〉A|Φ+〉BC ∈ HA ⊗HB ⊗HC is separable with respect to the partition {{1}, {2, 3}},
but is entangled with respect to both partitions {{1, 2}, {3}} and {{1, 3}, {2}}. Note

that even if a state is separable with respect to all the bipartite partitions, it may still

be entangled (i.e., not fully separable) [BDM+99].

To illustrate the many existing possibilities for Bloch spheres in the multipartite

case, we look at two examples:

1. Span{|000〉, |111〉}: the line connecting between the north pole (|000〉) and the

south pole (|111〉) is fully separable; all the other points are entangled with respect

to any bipartite partition.

2. Span{|000〉, |011〉}: the line connecting between the north pole (|000〉) and the

south pole (|011〉) is fully separable; all the other points are separable with respect

to the bipartite partition {{1}, {2, 3}}, but are entangled with respect to the

partitions {{1, 2}, {3}} and {{1, 3}, {2}}.

The proofs of separability above are direct from the definitions; and the proofs of

entanglement are implied by our analysis in the proof of Theorem 3.9.

Moreover, our Theorem 3.9 is true also for the set of fully separable states in the

multipartite case:

Theorem 3.11. Let H be a 2-dimensional subspace of HA1⊗· · ·⊗HAm , where HA1 , . . . ,HAm
are Hilbert spaces. Then H belongs to one of the following classes:

Class 1 All the states inside the Bloch ball of H are fully separable.

Classes 2+3 The Bloch ball of H has one line of fully separable states, and all the

other states are not fully separable.

Class 4 The Bloch ball of H has one fully separable point (pure state), and all the

other states are not fully separable.

Class 5 All the states inside the Bloch ball of H are not fully separable.
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Proof. First, assume that there is no fully separable mixed state inside the Bloch ball.

This means that there is at most one pure fully-separable state on the Bloch sphere

(because if two pure states are fully separable, then the line connecting them inside the

Bloch ball is fully separable, too). This matches Classes 4 and 5.

Now assume that there is a fully separable mixed state ρ inside the Bloch ball.

According to Corollary 3.6 (the “separable states condition”), this means that there are

at least two different fully separable pure states on the Bloch sphere. We denote them

by |ψ〉 = |ψA1〉 ⊗ · · · ⊗ |ψAm〉 and |φ〉 = |φA1〉 ⊗ · · · ⊗ |φAm〉.
We note that |ψ〉 � |φ〉 (defining the symbol ∼= as we did in the proof of Theorem 3.9

above; thus, the symbol � means that the two normalized states are really different,

as opposed to states that are equal up to a global phase), which means that |ψ〉 and

|φ〉 are linearly independent. Therefore, the Bloch sphere represents the 2-dimensional

subspace Span{|ψ〉, |φ〉}, which means that all the mixed states inside the Bloch ball

are of the form:

ρ = a00|ψ〉〈ψ|+ a01|ψ〉〈φ|+ a10|φ〉〈ψ|+ a11|φ〉〈φ| (3.23)

If |ψAi〉 ∼= |φAi〉 for all i except one value of i, then obviously all the states on and

inside the Bloch sphere are fully separable, which matches Class 1.

If |ψAi1 〉 � |φAi1 〉 and |ψAi2 〉 � |φAi2 〉 for i1 < i2, then we prove that given the

bipartite partition {I1, I2} with I1 = {1, . . . , i1} and I2 = {i1 + 1, . . . ,m} (satisfying

I1 ∪ I2 = {1, . . . ,m}, I1 ∩ I2 = ∅, i1 ∈ I1, and i2 ∈ I2), it holds that only the line

connecting |ψ〉 and |φ〉 inside the Bloch ball is fully separable, and that all the other

pure and mixed states in the Bloch ball are entangled with respect to the partition

{I1, I2}. This will match Classes 2+3, and will conclude our proof.

To prove that the line is fully separable, we notice that any convex combination

of fully separable states is fully separable. Therefore, the line connecting |ψ〉 and |φ〉
inside the Bloch ball is fully separable.

To prove that all the other states are entangled with respect to the partition {I1, I2},
we denote |ψI1〉 = |ψA1〉 ⊗ · · · ⊗ |ψAi1 〉 and |ψI2〉 = |ψAi1+1〉 ⊗ · · · ⊗ |ψAm〉; and similarly,

we define |φI1〉 and |φI2〉. Then, because i1 < i2, and because |ψAi1 〉 � |φAi1 〉 and

|ψAi2 〉 � |φAi2 〉, it must hold that |ψI1〉 � |φI1〉 and |ψI2〉 � |φI2〉. It also holds that

|ψ〉 = |ψI1〉 ⊗ |ψI2〉 and |φ〉 = |φI1〉 ⊗ |φI2〉; therefore, according to the proof of the

original Theorem 3.9, it holds that all the states outside of the line connecting |ψ〉 and

|φ〉 in the Bloch ball (i.e., all the states satisfying a01 6= 0 or a10 6= 0) are entangled

with respect to the partition {I1, I2}. Together with the proof that all the states on

that line (i.e., all the states satisfying a01 = a10 = 0) are fully separable, this matches

Classes 2+3, and concludes our proof.

Extensions of Theorem 3.9 to other cases of multipartite entanglement are beyond

the scope of this work.
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3.10 Previous Works

The existence of completely entangled subspaces has been discussed in many papers

before. In particular, this notion was used in [BDM+99] to prove the existence of a

huge class of bound entangled states.

Analysis of entangled states in a Hilbert subspace, using specific entanglement mea-

sures (e.g., the concurrence and the 3-tangle) and Bloch spheres, was done by [LOSU06]

and [OSU08]. However, the entanglement measures they choose usually vanish not only

for all the separable states, but also for some of the entangled states [OSU08]. Much

more recently, [RA16a] and [RA16b] investigated interesting classes in the same research

direction. In contrast, this chapter analyzes the separability and the entanglement in the

Bloch sphere for any rank-2 bipartite state; and, instead of using a specific entanglement

measure that cannot show the entanglement of some of the entangled states, we fully

characterize the set of separable states on and inside the state’s Bloch sphere.

3.11 Conclusion

We have found a complete classification of the possible sets of separable states in all the

2-dimensional subspaces of bipartite Hilbert spaces. Our result is general and is not

limited to specific entanglement measures or to specific bipartite spaces, but it applies

to all the bipartite Hilbert spaces, and it extends to the sets of fully separable states in

multipartite spaces. Moreover, the result makes it possible to define natural measures

that vanish exactly on the separable states.

Our analysis identifies the set of “Bloch-sphere neighbor states” of any rank-2 state

(namely, the set of states in its Bloch sphere). Such Bloch-sphere neighbor states may be

useful for various protocols: for example, entanglement purification or error correction

protocols may first turn the state into a Bloch-sphere neighbor state of desired properties

(e.g., more entangled), and then operate on that Bloch-sphere neighbor state. Those

possibilities may be explored by future research.

Other potential applications of our geometrical view include analyzing many possible

physical and algorithmic processes defined by using two pure states. Namely, our

results and the geometrical intuition they provide may be useful for analyzing the

separability and entanglement during processes in which two pure states play important

roles. Potential examples, that are left for future research, include the Bloch sphere

spanned by an entangled ground state of some Hamiltonian and by the closest pure

separable state to this ground state with respect to some entanglement measure, and

the Bloch sphere spanned by the initial state and the final state of some quantum

algorithm (for example, Grover’s algorithm). In those examples (and in many others),

the entanglement and separability (and other quantum features) along various paths

on and inside the Bloch sphere can be analyzed, and the Bloch sphere itself can be

classified.
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It may be possible to extend our results into higher-rank mixed states: for example,

it is possible to look at “portions” of the higher-rank states (e.g., a non-degenerate

rank-3 state defines three Bloch spheres, each corresponding to two out of the three

eigenstates); and it is possible to analyze higher-rank states that are ε-close (ε� 1) to

rank-2 states.

Another relevant direction for extending our results into higher-rank mixed states is

finding ways to characterize the set of separable states in the relevant higher-dimensional

Hilbert subspace, without having the intuitive geometrical visualization on the Bloch

sphere. The definitions of the classes easily extend into higher dimensions (e.g.,

Classes 2+3 mean that the set of separable states is the set of all mixtures of two

linearly independent pure separable states; a possible generalization into higher dimen-

sions is a set of separable states that equals to the set of all mixtures of k linearly

independent pure separable states). As a trivial example, the 3-dimensional Hilbert sub-

space Span{|00〉, |01〉, |02〉} ⊆ H2 ⊗H3 is completely separable, so it is a generalization

of Class 1. Lemmas 3.1-3.3 already apply to higher-rank mixed states; Corollaries 3.4-3.6

trivially apply to higher-rank mixed states and to higher-dimensional Hilbert subspaces

(without the geometrical visualization on the Bloch sphere); and Proposition 3.10 triv-

ially applies to higher-dimensional Hilbert subspaces of H2 ⊗H2. However, generalizing

the examples presented in Section 3.5 (and their corresponding Propositions, 3.7 and 3.8)

and the full classification presented in Theorems 3.9 and 3.11 into higher-dimensional

Hilbert subspaces is not trivial and is left for future research.
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Chapter 4

Security Against Collective

Attacks of a Modified BB84

QKD Protocol with Information

only in One Basis

In this chapter, we prove the security against collective attacks of a protocol named

“BB84-INFO-z” that is slightly different from BB84, and we use the trace distance for

making the proof more composable than similar previous security proofs of BB84.

This chapter is based on the published conference paper [BLM17b].

4.1 Introduction

Quantum key distribution (QKD) protocols take advantage of the laws of quantum

mechanics, and most of them can be proven secure even against powerful adversaries

limited only by the laws of physics. The two parties (Alice and Bob) want to create a

shared random key, using an insecure quantum channel and an unjammable classical

channel (to which the adversary may listen, but not interfere). The adversary (eaves-

dropper), Eve, tries to get as much information as she can on the final shared key. The

first and most important QKD protocol is BB84 [BB84].

Boyer, Gelles, and Mor [BGM09] discussed the security of the BB84 protocol against

collective attacks. Collective attacks [BM97b, BM97a, BBB+02] are a subclass of

the joint attacks; joint attacks are the most powerful theoretical attacks. [BGM09]

improved the security proof of Biham, Boyer, Brassard, van de Graaf, and Mor [BBB+02]

against collective attacks, by using some techniques of Biham, Boyer, Boykin, Mor, and

Roychowdhury [BBB+06] (that proved security against joint attacks). In this chapter,

too, we restrict the analysis to collective attacks, because security against collective

attacks is conjectured (and, in some security notions, proved [Ren08, CKR09]) to imply
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security against joint attacks. In addition, proving security against collective attacks is

much simpler than proving security against joint attacks.

In many QKD protocols, including BB84, Alice and Bob exchange several types

of bits (encoded as quantum systems, usually qubits): INFO bits, that are secret bits

shared by Alice and Bob and are used for generating the final key (via classical processes

of error correction and privacy amplification); and TEST bits, that are publicly exposed

by Alice and Bob (by using the classical channel) and are used for estimating the error

rate. In BB84, each bit is sent from Alice to Bob in a random basis (the z basis or the

x basis).

In this chapter, we extend the analysis of BB84 done in [BGM09] and prove the

security of a QKD protocol we shall name BB84-INFO-z. This protocol is almost

identical to BB84, except that all its INFO bits are in the z basis. In other words, the

x basis is used only for testing. The bits are thus partitioned into three disjoint sets:

INFO, TEST-Z, and TEST-X. The sizes of these sets are arbitrary (n INFO bits, nz

TEST-Z bits, and nx TEST-X bits).

We note that, while this chapter follows a line of research that mainly discusses

a specific approach of security proof for BB84 and similar protocols (this approach,

notably, considers finite-key effects and not only the asymptotic error rate), many other

approaches have also been suggested: see for example [May01, SP00, Ren08, RGK05].

In the other papers ([BM97b, BM97a, BBB+02, BBB+06, BGM09]) that discussed

the same approach of security proofs as discussed here, the classical mutual information

between Eve and the final key was calculated and bounded, which caused problems with

composability (see definition in [Ren08] and in Section 2.4). In contrast to those papers,

in this chapter we suggest a method to partially avoid those problems: we calculate

and bound the trace distance between any two density matrices Eve may hold. This

method is more composable, because it bounds the distance between the quantum states

of Eve instead of bounding the classical information she has (bounding the classical

information means, in particular, that we assume that Eve measures at the end of the

protocol, while in reality she is not required to measure then, but is allowed to wait

until Alice and Bob use the final key). This method is implemented in this chapter

for the security proof of BB84-INFO-z; it also directly applies to the BB84 security

proof in [BGM09], and it may be extended in the future to show that the BB84 security

proofs of [BGM09], [BBB+02], and [BBB+06] prove the composable security of BB84.

The “qubit space”, H2, is a 2-dimensional Hilbert space. The states |00〉, |10〉 form

an orthonormal basis of H2, called “the computational basis” or “the z basis”. The

states |01〉 , |00〉+|10〉√
2

and |11〉 , |00〉−|10〉√
2

form another orthonormal basis of H2, called

“the x basis”. Those two bases are said to be conjugate bases. (Those notations are

useful for us in the current chapter, and they are used in [BGM09] and in [BLM17b].

In the other chapters, |00〉, |10〉, |01〉, |11〉 were denoted by |0〉, |1〉, |+〉, |−〉, respectively.)

In this chapter, bit strings of some length t are denoted by a bold letter (e.g.,

i = i1 . . . it with i1, . . . , it ∈ {0, 1}) and are identified to elements of the t-dimensional

36



F2-vector space Ft
2, where F2 = {0, 1} and the addition of two vectors corresponds to

a XOR operation. The number of 1-bits in a bit string s is denoted by |s|, and the

Hamming distance between two strings s and s′ is dH(s, s′) = |s + s′|.

4.2 Formal Description of the BB84-INFO-z Protocol

Below we describe the BB84-INFO-z protocol used in this chapter.

1. Alice and Bob pre-agree on numbers n, nz, and nx (we denote N , n+ nz + nx),

on error thresholds pa,z and pa,x, on a linear error-correcting code C with an

r × n parity check matrix PC , and on a linear key-generation function (privacy

amplification) represented by an m × n matrix PK . It is required that all the

r +m rows of the matrices PC and PK put together are linearly independent.

2. Alice randomly chooses a partition P = (s, z,b) of the N bits by randomly

choosing three N -bit strings s, z,b ∈ FN
2 that satisfy |s| = n, |z| = nz, |b| = nx,

and |s + z + b| = N . Thus, P partitions the set of indexes {1, 2, ..., N} into three

disjoint sets:

• I (INFO bits, where sj = 1) of size n;

• TZ (TEST-Z bits, where zj = 1) of size nz; and

• TX (TEST-X bits, where bj = 1) of size nx.

3. Alice randomly chooses an N -bit string i ∈ FN
2 and sends the N qubit states

|ib11 〉, |i
b2
2 〉, . . . , |i

bN
N 〉, one after the other, to Bob using the quantum channel. Notice

that the INFO and TEST-Z bits are encoded in the z basis, while the TEST-X bits

are encoded in the x basis. Bob keeps each received qubit in quantum memory,

not measuring it yet1.

4. Alice publicly sends to Bob the string b = b1 . . . bN . Bob measures each saved

qubit in the correct basis (namely, if bi = 0 then he measures the i-th qubit in the

z basis, and if bi = 1 then he measures it in the x basis).

The bit string measured by Bob is denoted by iB. If there is no noise and no

eavesdropping, then iB = i.

5. Alice publicly sends to Bob the string s. The INFO bits, used for generating the

final key, are the n bits with sj = 1, while the TEST-Z and TEST-X bits are the

nz + nx bits with sj = 0. The substrings of i,b that correspond to the INFO bits

are denoted by is and bs.

1 Here we assume that Bob has a quantum memory and can delay his measurement. In practical
implementations, Bob usually cannot do that, but is assumed to measure in a randomly-chosen basis (z
or x), so that Alice and Bob later discard the qubits measured in the wrong basis. In that case, we
need to assume that Alice sends more than N qubits, so that N qubits are finally detected by Bob and
measured in the correct basis.
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6. Alice and Bob both publish their values of all the TEST-Z and TEST-X bits,

and they compare the bit values. If more than nz · pa,z TEST-Z bits are different

between Alice and Bob or more than nx · pa,x TEST-X bits are different between

them, they abort the protocol. We note that pa,z and pa,x (the pre-agreed error

thresholds) are the maximal allowed error rates on the TEST-Z and TEST-X bits,

respectively – namely, in each basis (z and x) separately.

7. Alice and Bob keep the values of the remaining n bits (the INFO bits, with sj = 1)

secret. The bit string of Alice is denoted x = is, and the bit string of Bob is

denoted xB.

8. Alice sends to Bob the r-bit string ξ = xPT
C , that is called the syndrome of x

(with respect to the error-correcting code C and to its corresponding parity check

matrix PC). By using ξ, Bob corrects the errors in his xB string (so that it is the

same as x).

9. Alice and Bob compute the m-bit final key k = xPT
K .

The protocol is defined similarly to BB84 (and to its description in [BGM09]), except

that it uses the generalized bit numbers n, nz, and nx (numbers of INFO, TEST-Z,

and TEST-X bits, respectively); that it uses the partition P = (s, z,b) for dividing the

N -bit string i into three disjoint sets of indexes (I, TZ , and TX); and that it uses two

separate thresholds (pa,z and pa,x) instead of one (pa).

4.3 Security Proof of BB84-INFO-z Against Collective At-

tacks

4.3.1 The General Collective Attack of Eve

Before the QKD protocol is performed (and, thus, independently of i and P), Eve

chooses some collective attack to perform. A collective attack is bitwise: each qubit is

attacked separately, by using a separate probe (ancillary state) that is attached by Eve

and saved by her in a quantum memory. Eve can keep her quantum probes indefinitely,

even after the final key is used by Alice and Bob; and she can perform, at any time of

her choice, an optimal measurement of all her probes together, chosen based on all the

information she has at the time of the measurement (including the classical information

sent during the protocol, and including the information she acquires when Alice and

Bob use the key).

Given the j-th qubit |ibjj 〉Tj sent from Alice to Bob (1 ≤ j ≤ N), Eve attaches a

probe state |0E〉Ej and applies some unitary operator Uj of her choice to the compound

system |0E〉Ej |i
bj
j 〉Tj . Then, Eve keeps to herself (in a quantum memory) the subsystem

Ej , which is her probe state; and sends to Bob the subsystem Tj , which is the qubit

sent from Alice to Bob (which may have been modified by her attack Uj).
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The most general collective attack Uj of Eve on the j-th qubit, represented in the

orthonormal basis {|0bj 〉Tj , |1bj 〉Tj}, is

Uj |0E〉Ej |0bj 〉Tj = |Ebj00〉Ej |0
bj 〉Tj + |Ebj01〉Ej |1

bj 〉Tj (4.1)

Uj |0E〉Ej |1bj 〉Tj = |Ebj10〉Ej |0
bj 〉Tj + |Ebj11〉Ej |1

bj 〉Tj , (4.2)

where |Ebj00〉Ej , |E
bj
01〉Ej , |E

bj
10〉Ej , and |Ebj11〉Ej are non-normalized states in Eve’s probe

system Ej attached to the j-th qubit.

We thus notice that Eve can modify the original product state of the compound

system, |0E〉Ej |i
bj
j 〉Tj , into an entangled state (e.g., |Ebj00〉Ej |0bj 〉Tj+|Ebj01〉Ej |1bj 〉Tj ). Eve’s

attack may thus cause Bob’s state to become entangled with her probe. On the one

hand, this may give Eve some information on Bob’s state; on the other hand, this causes

disturbance that may be detected by Bob. The security proof shows that the information

obtained by Eve and the disturbance caused by Eve are inherently correlated: this is

the basic reason QKD protocols are secure.

4.3.2 Results from [BGM09]

The security proof of BB84-INFO-z against collective attacks is very similar to the

security proof of BB84 itself against collective attacks, that was detailed in [BGM09].

Most parts of the proof are not affected at all by the changes made to BB84 to get the

BB84-INFO-z protocol (changes detailed in Section 4.2 of the current chapter), because

those parts assume fixed strings s and b, and because the attack is collective (so the

analysis is restricted to the INFO bits).

Therefore, the reader is referred to the proof in Section 2 and Subsections 3.1 to 3.5

of [BGM09], that applies to BB84-INFO-z without any changes (except changing the

total number of bits, 2n, to N , which does not affect the proof at all), and that will not

be repeated here.

We denote the rows of the error-correction parity check matrix PC as the vectors

v1, . . . , vr in Fn
2 , and the rows of the privacy amplification matrix PK as the vectors

vr+1, . . . , vr+m. We also define, for every r′, Vr′ , Span{v1, ..., vr′}; and we define

dr,m , min
r≤r′<r+m

dH(vr′+1, Vr′) = min
r≤r′<r+m

dr′,1. (4.3)

For a 1-bit final key k ∈ {0, 1}, we define ρ̂k to be the state of Eve corresponding to

the final key k, given that she knows ξ. Thus,

ρ̂k =
1

2n−r−1

∑
x
∣∣ xPT

C = ξ

x · vr+1 = k

ρb
′

x , (4.4)

where ρb
′

x is Eve’s state after the attack, given that Alice sent the INFO bit string x
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encoded in the bases b′ = bs. In [BGM09], the state ρ̃k was also defined: it is a lift-up

of ρ̂k (which means that ρ̂k is a partial trace of ρ̃k), in which the states ρb
′

x appearing in

ρ̂k are replaced by their purifications (see full definition in Subsection 3.4 of [BGM09]).

In the end of Subsection 3.5 of [BGM09], it was found that (in the case of a 1-bit

final key, i.e., m = 1)

1

2
tr |ρ̃0 − ρ̃1| ≤ 2

√
P

[
|CI | ≥

dr,1
2
| BI = b′, s

]
, (4.5)

where CI is the random variable corresponding to the n-bit string of errors on the n

INFO bits; BI is the random variable corresponding to the n-bit string of bases of the

n INFO bits; b′ is the bit-flipped string of b′ = bs; and dr,1 (and, in general, dr,m) was

defined above.

Now, according to [NC00, Theorem 9.2 and page 407], and using the fact that ρ̂k is

a partial trace of ρ̃k, we find that 1
2 tr |ρ̂0 − ρ̂1| ≤ 1

2 tr |ρ̃0 − ρ̃1|. From this result and

from inequality (4.5) we deduce that

1

2
tr |ρ̂0 − ρ̂1| ≤ 2

√
P

[
|CI | ≥

dr,1
2
| BI = b′, s

]
. (4.6)

4.3.3 Bounding the Differences Between Eve’s States

We define c , i + iB: namely, c is the XOR of the N -bit string i sent by Alice and of

the N -bit string iB measured by Bob. For each index 1 ≤ l ≤ N , cl = 1 if and only if

Bob’s l-th bit value is different from the l-th bit sent by Alice. The partition P divides

the N bits into n INFO bits, nz TEST-Z bits, and nx TEST-X bits. The corresponding

substrings of the error string c are cs (the string of errors on the INFO bits), cz (the

string of errors on the TEST-Z bits), and cb (the string of errors on the TEST-X bits).

The random variables that correspond to cs, cz, and cb are denoted by CI , CTZ , and

CTX , respectively.

We define C̃I to be the random variable corresponding to the string of errors on the

INFO bits if Alice had encoded and sent the INFO bits in the x basis (instead of the z

basis dictated by the protocol). In those notations, inequality (4.6) reads as

1

2
tr |ρ̂0 − ρ̂1| ≤ 2

√
P

[
|C̃I | ≥

dr,1
2
| P

]
= 2

√
P

[
|C̃I | ≥

dr,1
2
| cz, cb,P

]
, (4.7)

using the fact that Eve’s attack is collective, so the qubits are attacked independently,

and, therefore, the errors on the INFO bits are independent of the errors on the TEST-Z

and TEST-X bits (namely, of cz and cb).

As explained in [BGM09], inequality (4.7) was not derived for the actual attack

U = U1 ⊗ . . .⊗UN applied by Eve, but for a virtual flat attack (that depends on b and

therefore could not have been applied by Eve). That flat attack gives the same states
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ρ̂0 and ρ̂1 as the original attack U , and gives a lower (or the same) error rate in the

conjugate basis. Therefore, inequality (4.7) also holds for the original attack U . This

means that, from now on, all our results apply to the original attack U rather than to

the flat attack.

So far, we have discussed a 1-bit key. We will now discuss a general m-bit key k.

We define ρ̂k to be the state of Eve corresponding to the final key k, given that she

knows ξ:

ρ̂k =
1

2n−r−m

∑
x
∣∣xPT

C = ξ

xPT
K = k

ρb
′

x (4.8)

Proposition 4.1. For any two m-bit keys k,k′,

1

2
tr |ρ̂k − ρ̂k′ | ≤ 2m

√
P

[
|C̃I | ≥

dr,m
2
| cz, cb,P

]
. (4.9)

Proof. We define the key kj , for 0 ≤ j ≤ m, to consist of the first j bits of k′ and the

last m − j bits of k. This means that k0 = k, km = k′, and kj−1 differs from kj at

most on a single bit (the j-th bit).

First, we find a bound on 1
2 tr |ρ̂kj−1

− ρ̂kj |: since kj−1 differs from kj at most on a

single bit (the j-th bit, given by the formula x · vr+j), we can use the same proof that

gave us inequality (4.7), attaching the other (identical) key bits to ξ of the original

proof; and we find that

1

2
tr |ρ̂kj−1

− ρ̂kj | ≤ 2

√
P

[
|C̃I | ≥

dj
2
| cz, cb,P

]
, (4.10)

where we define dj as dH(vr+j , V
′
j ), and V ′j , Span{v1, v2, . . . , vr+j−1, vr+j+1, . . . , vr+m}.

Now we notice that dj is the Hamming distance between vr+j and some vector in

V ′j , which means that dj =
∣∣∑r+m

i=1 aivi
∣∣ with ai ∈ F2 and ar+j 6= 0. The properties of

Hamming distance assure us that dj is at least dH(vr′+1, Vr′) for some r ≤ r′ < r +m.

Therefore, we find that dr,m = minr≤r′<r+m dH(vr′+1, Vr′) ≤ dj .

The result dr,m ≤ dj implies that if |C̃I | ≥ dj
2 then |C̃I | ≥ dr,m

2 . Therefore,

inequality (4.10) implies

1

2
tr |ρ̂kj−1

− ρ̂kj | ≤ 2

√
P

[
|C̃I | ≥

dr,m
2
| cz, cb,P

]
. (4.11)

Now we use the triangle inequality for norms to find

1

2
tr |ρ̂k − ρ̂k′ | =

1

2
tr |ρ̂k0 − ρ̂km | ≤

m∑
j=1

1

2
tr |ρ̂kj−1

− ρ̂kj |
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≤ 2m

√
P

[
|C̃I | ≥

dr,m
2
| cz, cb,P

]
, (4.12)

as we wanted.

The value we want to bound is the expected value of trace distance between two

states of Eve corresponding to two final keys. However, we should take into account

that if the test fails, no final key is generated, and the distance between all of Eve’s

states becomes 0 for any purpose. We thus define the random variable ∆
(pa,z ,pa,x)
Eve (k,k′)

for any two final keys k,k′:

∆
(pa,z ,pa,x)
Eve (k,k′|P, ξ, cz, cb) ,


1
2 tr |ρ̂k − ρ̂k′ | if

|cz|
nz
≤ pa,z and

|cb|
nx
≤ pa,x

0 otherwise
(4.13)

We need to bound the expected value 〈∆(pa,z ,pa,x)
Eve (k,k′)〉, that is given by:

〈∆(pa,z ,pa,x)
Eve (k,k′)〉 =

∑
P,ξ,cz,cb

∆
(pa,z ,pa,x)
Eve (k,k′|P, ξ, cz, cb) · p(P, ξ, cz, cb) (4.14)

Theorem 4.2.

〈∆(pa,z ,pa,x)
Eve (k,k′)〉 ≤ 2m

√
P
[(
|C̃I |
n ≥

dr,m
2n

)
∧
( |CTZ |

nz
≤ pa,z

)
∧
( |CTX |

nx
≤ pa,x

)]
(4.15)

where |C̃I |n is the random variable corresponding to the error rate on the INFO bits if

they had been encoded in the x basis,
|CTZ |
nz

is the random variable corresponding to the

error rate on the TEST-Z bits, and
|CTX |
nx

is the random variable corresponding to the

error rate on the TEST-X bits.

Proof. We use the convexity of x2, namely, the fact that for all {pi}i satisfying pi ≥ 0

and
∑

i pi = 1, it holds that (
∑

i pixi)
2 ≤

∑
i pix

2
i . We find that:

〈∆(pa,z ,pa,x)
Eve (k,k′)〉2

=

 ∑
P,ξ,cz,cb

∆
(pa,z ,pa,x)
Eve (k,k′|P, ξ, cz, cb) · p(P, ξ, cz, cb)

2

(by (4.14))

≤
∑

P,ξ,cz,cb

(
∆

(pa,z ,pa,x)
Eve (k,k′|P, ξ, cz, cb)

)2
· p(P, ξ, cz, cb) (by convexity of x2)

=
∑

P,ξ, |cz|
nz
≤pa,z ,

|cb|
nx
≤pa,x

(
1
2 tr |ρ̂k − ρ̂k′ |

)2 · p(P, ξ, cz, cb) (by (4.13))

≤ 4m2 ·
∑

P,ξ, |cz|
nz
≤pa,z ,

|cb|
nx
≤pa,x

P
[
|C̃I | ≥ dr,m

2 | cz, cb,P
]
· p(P, ξ, cz, cb) (by (4.9))
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= 4m2 ·
∑

P, |cz|
nz
≤pa,z ,

|cb|
nx
≤pa,x

P
[
|C̃I | ≥ dr,m

2 | cz, cb,P
]
· p(P, cz, cb)

= 4m2 ·
∑
P
P
[(
|C̃I | ≥ dr,m

2

)
∧
( |CTZ |

nz
≤ pa,z

)
∧
( |CTX |

nx
≤ pa,x

)
| P
]
· p(P)

= 4m2 · P
[(
|C̃I | ≥ dr,m

2

)
∧
( |CTZ |

nz
≤ pa,z

)
∧
( |CTX |

nx
≤ pa,x

)]
(4.16)

as we wanted.

4.3.4 Proof of Security

Following [BGM09] and [BBB+06], we choose matrices PC and PK such that the

inequality
dr,m
2n > pa,x + ε is satisfied for some ε (we will explain in Subsection 4.3.6 why

this is possible). This means that

P
[(
|C̃I |
n ≥

dr,m
2n

)
∧
( |CTZ |

nz
≤ pa,z

)
∧
( |CTX |

nx
≤ pa,x

)]
≤ P

[(
|C̃I |
n > pa,x + ε

)
∧
( |CTX |

nx
≤ pa,x

)]
. (4.17)

We will now prove the right-hand-side of (4.17) to be exponentially small in n.

As said earlier, the random variable C̃I corresponds to the bit string of errors on the

INFO bits if they had been encoded in the x basis. The TEST-X bits are also encoded

in the x basis, and the random variable CTX corresponds to the bit string of errors on

those bits. Therefore, we can treat the selection of the indexes of the n INFO bits and

the nx TEST-X bits as a random sampling (after the numbers n, nz, and nx and the

indexes of the TEST-Z bits have all already been chosen) and use Hoeffding’s theorem

(that is described in Appendix A of [BGM09]).

Therefore, for each bit string c1 . . . cn+nx that consists of the errors in the n+ nx

INFO and TEST-X bits if the INFO bits had been encoded in the x basis, we apply

Hoeffding’s theorem: namely, we take a sample of size n without replacement from the

population c1, . . . , cn+nx (this corresponds to the random selection of the indexes of

the INFO bits and the TEST-X bits, as defined above, given that the indexes of the

TEST-Z bits have already been chosen). Let X = |C̃I |
n be the average of the sample

(this is exactly the error rate on the INFO bits, assuming, again, that the INFO bits had

been encoded in the x basis); and let µ =
|C̃I |+|CTX |

n+nx
be the expectancy of X (this is

exactly the error rate on the INFO bits and TEST-X bits together). Then
|CTX |
nx
≤ pa,x

is equivalent to (n+nx)µ−nX ≤ nx ·pa,x, and, therefore, to n · (X−µ) ≥ nx · (µ−pa,x).

This means that the conditions
(
|C̃I |
n > pa,x + ε

)
and

( |CTX |
nx
≤ pa,x

)
rewrite to

(
X − µ > ε+ pa,x − µ

)
∧
(
n

nx
· (X − µ) ≥ µ− pa,x

)
, (4.18)

which implies
(

1 + n
nx

)
(X − µ) > ε, which is equivalent to X − µ > nx

n+nx
ε. Using
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Hoeffding’s theorem (from Appendix A of [BGM09]), we get:

P

[(
|C̃I |
n

> pa,x + ε

)
∧
(
|CTX |
nx

≤ pa,x
)]
≤ P

[
X − µ > nx

n+ nx
ε

]
≤ e−2

(
nx

n+nx

)2
nε2

(4.19)

In the above discussion, we have actually proved the following Theorem:

Theorem 4.3. Let us be given δ > 0, R > 0, and, for infinitely many values of n,

a family {vn1 , . . . , vnrn+mn} of linearly independent vectors in Fn
2 such that δ <

drn,mn
n

and mn
n ≤ R. Then for any pa,z, pa,x > 0 and εsec > 0 such that pa,x + εsec ≤ δ

2 , and

for any n, nz, nx > 0 and two mn-bit final keys k,k′, the distance between Eve’s states

corresponding to k and k′ satisfies the following bound:

〈∆(pa,z ,pa,x)
Eve (k,k′)〉 ≤ 2Rne

−
(

nx
n+nx

)2
nε2sec (4.20)

In Subsection 4.3.6 we explain why the vectors required by this Theorem exist.

We note that the quantity 〈∆(pa,z ,pa,x)
Eve (k,k′)〉 bounds the expected values of the

Shannon Distinguishability and of the mutual information between Eve and the final

key, as done in [BGM09] and [BBB+06], which is sufficient for proving non-composable

security; but it also avoids composability problems: Eve is not required to measure

immediately after the protocol ends, but she is allowed to wait until she gets more

information; and equation (4.20) bounds the trace distance between any two of Eve’s

possible states.

4.3.5 Reliability

Security itself is not sufficient; we also need the key to be reliable (namely, to be the

same for Alice and Bob). This means that we should make sure that the number

of errors on the INFO bits is less than the maximal number of errors that can be

corrected by the error-correcting code. We demand that our error-correcting code can

correct n(pa,z + εrel) errors (we explain in Subsection 4.3.6 why this demand is satisfied).

Therefore, reliability of the final key with exponentially small probability of failure is

guaranteed by the following inequality: (as said, CI corresponds to the actual bit string

of errors on the INFO bits in the protocol, when they are encoded in the z basis)

P

[(
|CI |
n

> pa,z + εrel

)
∧
(
|CTZ |
nz

≤ pa,z
)]
≤ e−2

(
nz

n+nz

)2
nε2rel (4.21)

This inequality is proved by an argument similar to the one used in Subsection 4.3.4:

the selection of the indexes of the INFO bits and the TEST-Z bits is a random partition

of n+nz bits into two subsets of sizes n and nz, respectively (assuming that the indexes

of the TEST-X bits have already been chosen), and thus it corresponds to Hoeffding’s

sampling.
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(0.0756, 0.0756)

Figure 4.1: The secure asymptotic error rates zone for BB84-INFO-z (below
the curve)

4.3.6 Security, Reliability, and Error Rate Threshold

According to Theorem 4.3 and to the discussion in Subsection 4.3.5, to get both security

and reliability we only need vectors {vn1 , . . . , vnrn+mn} satisfying both the conditions

of the Theorem (distance
drn,mn

2n > δ
2 ≥ pa,x + εsec) and the reliability condition (the

ability to correct n(pa,z + εrel) errors). Such families were proven to exist in Appendix E

of [BBB+06], giving the bit-rate:

Rsecret ,
m

n
= 1−H2(2pa,x + 2εsec)−H2

(
pa,z + εrel +

1

n

)
(4.22)

where H2(x) , −x log2(x)− (1− x) log2(1− x).

Note that we use here the error thresholds pa,x for security and pa,z for reliability.

This is possible, because in [BBB+06] those conditions (security and reliability) on the

codes are discussed separately.

To get the asymptotic error rate thresholds, we require Rsecret > 0, and we get the

condition:

H2(2pa,x + 2εsec) +H2

(
pa,z + εrel +

1

n

)
< 1 (4.23)

The secure asymptotic error rate thresholds zone is shown in Figure 4.1 (it is below

the curve), assuming that 1
n is negligible. Note the trade-off between the error rates

pa,z and pa,x. Also note that in the case pa,z = pa,x, we get the same threshold as BB84

([BBB+06] and [BGM09]), which is 7.56%.
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4.4 Conclusion

In this chapter, we have analyzed the security of the BB84-INFO-z protocol against

any collective attack. We have discovered that the results of BB84 hold very similarly

for BB84-INFO-z, with only two exceptions:

1. The error rates must be separately checked to be below the thresholds pa,z and

pa,x for the TEST-Z and TEST-X bits, respectively, while in BB84 the error rate

threshold pa applies to all the TEST bits together.

2. The exponents of Eve’s information (security) and of the failure probability of the

error-correcting code (reliability) are different than in [BGM09], because different

numbers of test bits are now allowed (nz and nx are arbitrary). This implies that

the exponents may decrease more slowly (or more quickly) as a function of n.

However, if we choose nz = nx = n (thus sending N = 3n qubits from Alice to

Bob), then we get exactly the same exponents as in [BGM09].

The asymptotic error rate thresholds found in this chapter allow us to tolerate a

higher threshold for a specific basis (say, the x basis) if we demand a lower threshold

for the other basis (z). If we choose the same error rate threshold for both bases,

then the asymptotic bound is 7.56%, exactly the bound found for BB84 in [BBB+06]

and [BGM09].

We conclude that even if we change the BB84 protocol to have INFO bits only in the

z basis, this does not harm its security and reliability (at least against collective attacks).

This does not even change the asymptotic error rate threshold. The only drawbacks

of this change are the need to check the error rate for the two bases separately, and

the need to either send more qubits (3n qubits in total, rather than 2n) or get a slower

exponential decrease of the exponents required for security and reliability.

We thus find that the feature of BB84, that both bases are used for information,

is not very important for security and reliability, and that BB84-INFO-z (that lacks

this feature) is almost as useful as BB84. This may have important implications on the

security and reliability of other protocols that, too, use only one basis for information

qubits, such as [Mor98] and some two-way protocols [BKM07, ZQL+09].

We also present a better approach for the proof, that uses the quantum distance

between two states rather than the classical information. In [BGM09], [BBB+02],

and [BBB+06], the classical mutual information between Eve’s information (after an

optimal measurement) and the final key was calculated (by using the trace distance

between two quantum states); although we should note that in [BGM09] and [BBB+06],

the trace distance was used for the proof of security of a single bit of the final key even

when all other bits are given to Eve, and only the last stages of the proof discussed

bounding the classical mutual information. In the current chapter, on the other hand,

we use the trace distance between the two quantum states until the end of the proof,

which avoids composability problems that existed in the previous works.
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Therefore, this proof makes a step towards making [BGM09], [BBB+02], and [BBB+06]

prove composable security of BB84 (and, in particular, security even if Eve keeps her

quantum states until she gets more information when Alice and Bob use the key, rather

than measuring them at the end of the protocol). This approach also applies (similarly)

to the BB84 security proof in [BGM09].

We note that this chapter strengthens the security proofs described in [BGM09,

BBB+02, BBB+06], both because it slightly generalizes them (from security of BB84 to

security of BB84-INFO-z) and because it makes them more composable. Those security

proofs have various advantages over other methods to prove security: first of all, they

are mostly self-contained, while other security proofs require many results from other

areas of quantum information (such as various notions of entropy needed for the security

proof of [Ren08, RGK05], and entanglement purification and quantum error correction

needed for the security proof of [SP00]); second, they give tight finite-key bounds, unlike

several other methods (see details below); and finally, at least in some sense, they are

simpler than other proof techniques. On the other hand, their generality and their

asymptotic error-rate threshold (7.56%, rather than 11% given by [RGK05, SP00]) are

yet to be improved by future research.

Our method for proving security gives explicit and tight finite-key bounds. In

contrast to this, the security proof of [SP00] gives only asymptotic results (for infinitely

long keys). For the security proof of [Ren08, RGK05], it is proved today that for some

protocols (including BB84), one can get tight finite-key bounds that are the same as

the ones found by our method [TLGR12]; but at first that security method gave very

pessimistic bounds (by using the de Finetti theorem [Ren08, Ren07]), and later, the

bounds were improved for several protocols (including BB84) [SR08], but were still not

tight (see [TLGR12] for comparison).

We also note that the existence of many different proof techniques is important,

because some proofs may be more adjustable to various QKD protocols or to practical

scenarios; some proofs may be clearer to different readers with different backgrounds;

analyzing the differences between the proofs and between their obtained results may

lead to important insights on the strengths and weaknesses of various techniques; and

the existence of many proofs makes the security result more certain and less prone to

errors.
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Chapter 5

Summary

In this research we have used important basic notions of quantum information (en-

tanglement, the Bloch sphere, and the trace distance) for analyzing several research

problems, both in quantum information and in quantum cryptography. We have seen

the importance of those basic QIP notions from various perspectives.

We have provided a full geometrical analysis of entanglement and separability for all

the possible bipartite Bloch spheres – that is, for all the possible 2-dimensional Hilbert

spaces. We have seen that the possible sets of separable states in those Bloch spheres

belong to exactly five classes, and are not arbitrary convex sets. This finding, while

interesting by itself, may also be useful in the future for defining new entanglement

measures and for using the “Bloch sphere neighbors” of a rank-2 state in various

quantum procedures (e.g., entanglement purification and error correction).

We have also provided a proof of security against collective attacks for a new quantum

key distribution (QKD) protocol, named BB84-INFO-z. We have extended an existing

simplified security proof of BB84 against collective attacks [BGM09] to also hold against

this different protocol. We have also used the trace distance, a geometrical distance

corresponding (for qubits) to Euclidean distance on the Bloch sphere, for improving the

composability of our security proof: while there are still some technical barriers blocking

our proof from reaching the full definition of composable security, our proof attains the

most important property of composability (a quantum near-indistinguishability between

different states of Eve). Moreover, it applies to the simplified proof of security against

collective attacks of [BGM09], but it may extend to the proof of security against joint

attacks [BBB+06], which gives a reasonable finite-key analysis and is generally simpler

than many of the currently-existing composable security proofs (e.g., [RGK05, Ren08]).

5.1 Open Questions

Some questions raised by this research are left for the future. In particular, the

properties of the geometrical entanglement measures defined for Bloch spheres (defining

the entanglement measure of a state as its Euclidean distance, that is actually twice the
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trace distance, from the closest separable state in the Bloch sphere) are not discussed

and are left for future analysis; and so are potential improvements for entanglement

distillation and entanglement purification processes.

Other open questions left for the future are various possible extensions of our

partly-composable security proof of BB84-INFO-z against collective attacks. It may be

extended to joint attacks; it may be extended to fully composable security; it may be

extended to other protocols; and it may simplify and unify the currently-existing QKD

security proofs. Of course, like the other currently-existing full security proofs of QKD,

it does not fully model the realistic systems (which means that realistic systems do not

have their full security proved, and may have many loopholes); extending full security

proofs to realistic systems is another important open question in the area of security of

QKD.
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''מצבים (הנקראים שזורים שאינם מצבים המייצגות בלוך בכדור הנקודות בקבוצת מתבוננים אנו אחד.

קו כולו, הכדור הפריקים: המצבים קבוצת של אפשריות מחלקות חמש שקיימות ומוכיחים פריקים'')

לכדורי דוגמאות נותנים אנו הריקה. והקבוצה הכדור, שפת על נקודה קוטר, שאינו קו קוטר, שהוא

אפשרויות מציגים אנו בנוסף, אחרות. מחלקות קיימות שלא ומוכיחים מחלקה, לכל השייכים בלוך

גדול וערך הפריקים המצבים לכל 0 ערך שמתאימים היום, מהקיימים שונים שזירות'' ''מדדי להגדרת

ב''מרחק שימוש באמצעות היא שזירות'' ''מדד להגדרת האפשרויות אחת השזורים. המצבים לכל מ־0

חשובות להיות עשויות שהצגנו התוצאות ביותר. הקרוב הפריק מהמצב המבוקש המצב של העקבה''

זה. מדד בחישוב קיים) (אם בכדור ביותר הקרוב הפריק המצב מציאת לצורך

המרחקים אחד קוונטיים. מצבים בין מרחקים של שונים סוגים להגדיר ניתן קוונטית בפיסיקה

המצבים. בין ההבחנה'' ''יכולת על מלמעלה חסם והוא העקבה, מרחק נקרא ביותר השימושיים

ובין ;1 הוא שלהם העקבה מרחק ולכן בוודאות, להבחין ניתן אורתוגונליים מצבים שני בין (למשל:

יש העקבה למרחק (.0 הוא שלהם העקבה מרחק ולכן כלל, להבחין ניתן לא לזה זה זהים מצבים שני

פשוטה: גאומטרית משמעות לו יש ובנוסף, קוונטית, ובהצפנה קוונטית באינפורמציה רבים שימושים

בלוך. בכדור המצבים בין האוקלידי המרחק למחצית שווה הוא

ובוב, אליס הפרוטוקול, את המפעילים משתתפים לשני מאפשרים קוונטית מפתחות הפצת פרוטוקולי

חישוב יכולת בעל איב, כל־יכולה, יריבה מולם מתייצבת אם גם משותף, אקראי סודי מפתח ליצור

קוונטי בערוץ משתמשים ובוב אליס קלאסית). בתקשורת בלתי־אפשרית משימה (זוהי בלתי־מוגבלת

ובערוץ זה) בערוץ הנשלחים הקוונטיים המצבים כל את כרצונה ולשנות ליירט יכולה (איב לא־בטוח

אינה אך קלאסיים, מביטים המורכב בו, הנשלח המידע לכל להאזין יכולה (איב מאומת קלאסי

וכן ,(BB84 (הנקרא וברסר בנט של הראשון, הקוונטית המפתחות הפצת לפרוטוקול לשנותו). יכולה

המבצעים מאוד חזקים יריבים כנגד בטיחות הוכחות קיימות נוספים, חשובים פרוטוקולים למספר

אנו 4 בפרק הפרוטוקול. של (אידאלי) תאורטי מימוש על האפשריות ביותר הכלליות ההתקפות את

נרחבת מחלקה כנגד בטיחותו את ומוכיחים ,''BB84-INFO-z'' הקרוי שונה, מעט בפרוטוקול דנים

משתמשים אנו מכך, יתרה .(collective attacks או קיבוציות'', ''התקפות (הקרויות התקפות של

בטיחות מהוכחות להרכבה'' ''ניתנת ליותר שלנו הבטיחות הוכחת את להפוך כדי העקבה'' ב''מרחק

סודי נשאר הסודי שהמפתח לכך הוכחה לקראת להתקדם כדי כלומר, :BB84 עבור דומות קודמות

הצפנה. לצורך למשל, – קריפטוגרפיים מפרוטוקולים כחלק בפועל בו משתמשים ובוב אליס כאשר גם

ii



תקציר

לבצע ומאפשרים לא־אינטואיטיביות למסקנות מובילים הקוונטים תורת של הפיסיקליים החוקים

להיות עשוי חלקיק (למשל: אפשריים בלתי שהם לחשוב היה שניתן פיסיקליים מצבים וליצור פעולות

מצבים כמה או שונים, זמנים כמה שונים, מיקומים כמה של – הפרש או סכום למשל, – בסופרפוזיציה

תורת חוקי את לנצל ניתן כיצד חוקר קוונטית אינפורמציה עיבוד הנקרא המחקר תחום שונים).

אפשריות שאינן משימות ולבצע בעיות לפתור ומאפשר ועיבודה, אינפורמציה ייצוג לצורך הקוונטים

ולא־קוונטיים). סטנדרטיים (כלומר, קלאסיים תקשורת ובמכשירי במחשבים קשות) שהן (או

בלוך כדור שזירות, (בעיקר הקוונטית האינפורמציה תורת של יסודיים במושגים משתמשים אנו זו, בתזה

ופרוטוקולי לזה זה קוונטיים מצבים של קשרים לנתח כדי קוונטיים) מצבים בין גאומטריים ומרחקים

קוונטית. הצפנה

מדויק), לגמרי (ולא אינטואיטיבי באופן קוונטיים. מצבים של חשובה תכונה היא השזירות תכונת

היא שזירות שונות. קוונטיות מערכות מספר בין קלאסיות) (ולא קוונטיות קורלציות מייצגת שזירות

שימושים יש השזירות לתופעת קלאסי. הסבר לה ואין ביותר, החשובות הקוונטיות התופעות אחת

הקוונטים תורת יסודות בחקר ואף קוונטי, במחשוב קוונטית, בתקשורת קוונטית, באינפורמציה רבים

עצמה.

במרחב היחידה כדור בלוך: כדור על־ידי גאומטרי באופן לייצג ניתן הקוונטיים מהמצבים חלק

תורת של החוקים ישירות פועלים שעליהם ה''רגילים'', הקוונטיים המצבים התלת־ממדי. האוקלידי

התפלגות הוא מעורב מצב מעורבים: מצבים קיימים להם, בנוסף טהורים. מצבים נקראים הקוונטים,

תכונה שמקיימים טהורים מצבים שני בהינתן טהורים. מצבים מספר של (''עירוב'') הסתברויות

ואת בלוך כדור של הצפוני בקוטב מהם אחד לקבוע ניתן (''אורתוגונליות''), מסוימת חשובה מתמטית

שהם הטהורים המצבים כל מופיעים בלוך) (ספירת הכדור שפת על ואז שלו, הדרומי בקוטב השני

שמערבים המעורבים המצבים כל מופיעים הכדור ובתוך המקוריים, המצבים שני של סופרפוזיציות

ואינטואיטיבי שימושי הוא זה גאומטרי ייצוג הכדור. שפת שעל הטהורים מהמצבים יותר) (או שניים

.2 בפרק מופיע עליו נוסף מידע שונות; למטרות

מעורבים מצבים מסוים: מסוג קוונטיים מצבים עבור השזירות של גאומטרי ניתוח מוצג 3 בפרק

2 מדרגה מעורב מצב לכל טהורים.) מצבים שני של עירוב הוא ''2 ''מדרגה מעורב (מצב .2 מדרגה

מופיע (ושבתוכו הטהורים המצבים שני מופיעים שעליו מוכלל בלוך כדור מגדירים אנו מימד), (מכל

שהגדרנו. בלוך כדור בתוך שלו ה''שכנים'' המצבים ואת המעורב המצב את ומנתחים המעורב) המצב

כדור בתוך נקודה כל כזכור, ויחיד.) אחד בלוך בכדור נמצא 2 מדרגה מעורב מצב שכל מוכיחים (אנו

טהור מצב מייצגת בלוך) ספירת (הנקראת הכדור שפת על נקודה וכל אחד, מעורב מצב מייצגת בלוך
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המחשב. למדעי בפקולטה מור, טל חבר פרופ' בהנחיית נעשה המחקר
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