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Abstract. The “Bright Illumination” attack [Lydersen et al., Nat. Photon. 4, 686–
689 (2010)] is a practical attack, fully implementable against quantum key dis-
tribution systems. In contrast to almost all developments in quantum informa-
tion processing (for example, Shor’s factorization algorithm, quantum teleporta-
tion, Bennett-Brassard (BB84) quantum key distribution, the “Photon-Number
Splitting” attack, and many other examples), for which theory has been pro-
posed decades before a proper implementation, the “Bright Illumination” attack
preceded any sign or hint of a theoretical prediction. Here we explain how
the “Reversed-Space” methodology of attacks, complementary to the notion
of “quantum side-channel attacks” (which is analogous to a similar term in
“classical”—namely, non-quantum—computer security), has missed the oppor-
tunity of predicting the “Bright Illumination” attack.
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1 Introduction

In the area of quantum information processing, theory usually precedes experiment.
For example, the BB84 protocol for quantum key distribution (QKD) was suggested in
1984 [2], five years before it was implemented [1], and it still cannot be implemented in
a perfectly secure way even today [16,25]. The “Photon-Number Splitting” attack was
suggested in 2000 [5,6], but it is not implementable today. Quantum computing was
suggested in the 1980s (see, e.g., [7]), but no useful and universal quantum computer
(with a large number of clean qubits) has been implemented until today [22]. The same
applies to Shor’s factorization algorithm [27,28], to quantum teleportation [3] (at least
to some extent; see also [21]), and to many other examples.

In contrast to the above examples, the “Bright Illumination” attack against practical
QKD systems was presented and fully implemented in 2010 [18], prior to any theoret-
ical prediction of the possibility of such an attack. Here we ask the question: could the
“Bright Illumination” attack have been theoretically predicted?
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Quantum key distribution (QKD) makes it possible for two parties, Alice and Bob,
to agree on a shared secret key. This task, that is impossible for two parties using only
classical communication, is made possible by taking advantage of quantum phenomena:
Alice and Bob use an insecure quantum channel and an authenticated (unjammable)
classical channel. The resulting key is secure even against an adversary (Eve) that may
use the most general attacks allowed by quantum physics, and remains secret indefi-
nitely, even if Eve has unlimited computing power.

For example, in the BB84 QKD protocol [2], Alice sends to Bob N qubits, each
of them randomly chosen from the set of quantum states {|0〉, |1〉, |+〉 � |0〉+|1〉√

2
, |−〉 �

|0〉−|1〉√
2

}, and Bob measures each of them either in the computational basis {|0〉, |1〉} or

in the Hadamard basis {|+〉, |−〉}, chosen randomly. Thereafter, Alice and Bob post-
process the results by using the classical channel. If Alice and Bob use matching bases,
they share a bit (unless there is some noise or eavesdropping); if they use mismatching
bases, Bob’s results are random. Alice and Bob reveal their basis choices, and discard
the bits for which they used mismatching bases. After that, they publicly reveal a ran-
dom subset of their bits in order to estimate the error rate (then discarding those exposed
test bits), aborting the protocol if the error rate is too high; and they perform error cor-
rection and privacy amplification processes, obtaining a completely secret, identical
final key.

The security promises of QKD are true in theory, but its practical security is far
from being guaranteed. The practical implementations of QKD use realistic photons;
therefore, they deviate from the theoretical protocols, which use ideal qubits. These
deviations make possible various attacks [16,24], related to the idea of “side-channel
attacks” in classical (i.e., non-quantum) computer security.

For example, the “Photon-Number Splitting” (PNS) attack [5,6] (see Subsect. 2.1)
takes advantage of some specific imperfections: while the quantum state sent by Alice
should be encoded in a single photon, Eve exploits the fact that in most implementa-
tions, Alice sometimes sends to Bob more than one photon (e.g., two photons). The PNS
attack was found using more realistic notations—the Fock space notations; the main
insight of [5,6] is that using proper notations is vital, both when theoretically search-
ing for possible loopholes and attacks against QKD, and when attempting to prove its
security.

The “Bright Illumination” practical attack [18] uses a weakness of Bob’s measure-
ment devices that allows Eve to “blind” them and fully control Bob’s measurement
results. Eve can then get full information on the secret key, without inducing any error.

In Sect. 2 we explain experimental QKD systems and their weaknesses: we
introduce the Fock space notations, the “Photon-Number Splitting” (PNS) attack,
and two imperfections of Bob’s detection process. In Sects. 3 and 4 we describe
the practical “Bright Illumination” attack and the “Reversed-Space” methodology of
attacks [4,10,11], respectively, and in Sect. 6 we bring together all the above notions
for explaining the theory underlying the “Bright Illumination” attack. As an important
side issue, in Sect. 5 we describe the notion of “quantum side-channel attacks”, par-
tially related to all the above. We conclude that while the “Bright Illumination” attack
is not a “side-channel” attack, it can be modeled as a “Reversed-Space” attack [11]:
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this attack and similar attacks could and should have been proposed or anticipated by
theoreticians.

2 Experimental QKD, Imperfections, and the Fock Space
Notations

The BB84 protocol may be experimentally implemented in a “polarization-based”
implementation, that we can model as follows: Alice’s quantum states, that are sent
to Bob, are single photons whose polarizations encode the quantum states. The four
possible states to be sent by Alice are |0〉, |1〉, |+〉, and |−〉, where |0〉 = |↔〉 (a sin-
gle photon in the horizontal polarization) and |1〉 = |�〉 (a single photon in the vertical
polarization). The states |+〉 = |↗↙〉 and |−〉 = |↖↘〉 correspond to orthogonal diagonal
polarizations.

For measuring the incoming photons, Bob uses a polarizing beam splitter (PBS)
and two detectors. Bob actively configures the PBS for choosing his random measure-
ment basis (the computational basis {|0〉, |1〉} or the Hadamard basis {|+〉, |−〉}). If the
PBS is configured for measurement in the computational basis, it sends any horizontally
polarized photon to one arm and sends any vertically polarized photon to the other arm.
In the end of each arm, a detector is placed, which clicks whenever it detects a photon.
Therefore, the detector in the first arm clicks only if the |0〉 qubit state is detected, and
the detector in the second arm clicks only if the |1〉 qubit state is detected. A diagonally
polarized photon (i.e., |+〉 = |↗↙〉 or |−〉 = |↖↘〉) would cause exactly one of the detec-
tors (uniformly random) to click. Similarly, if the PBS is configured for measurement in
the Hadamard basis, it distinguishes |+〉 from |−〉. This implementation may be slow,
because Bob needs to randomly choose a basis for each arriving photon.

A more practical—yet imperfect—variant of this implementation uses a “passive”
basis choice (e.g., [15]). This variant uses one polarization-independent beam splitter,
two PBSs, and four detectors. In this variant, the polarization-independent beam splitter
randomly sends each photon to one arm or to another. A photon going to the first arm is
then measured (as described above) in the computational basis, while a photon going to
the second arm is measured (as described above) in the Hadamard basis. This “passive”
variant is exposed to various attacks; see Sect. 4.

2.1 The Fock Space Notations and the “Photon-Number Splitting” (PNS) Attack

We use the Fock space notations for describing practical QKD systems:

– In the simplest case, there are k ≥ 0 photons, and all these photons belong to one
photonic mode. The Fock state |k〉 represents k photons in this single mode: for
example, |0〉 is the vacuum state, representing no photons in that mode; |1〉 rep-
resents one photon in that mode; |2〉 represents two photons in that mode; and so
on.

– For describing several different pulses of photons (for example, photons traveling
on different arms or at different time bins, or any other external degree of freedom),
we need several photonic modes. For example, if we assume a single photon in two
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pulses (and, thus, in two modes), we can describe a qubit1: for the computational
basis {|0〉, |1〉} of a single qubit, we write |0〉 = |0〉⊗ |1〉 ≡ |0〉|1〉 and |1〉 = |1〉⊗
|0〉 ≡ |1〉|0〉. (Those two modes are mathematically described using a tensor product,
but we omit the ⊗ sign for brevity.) A superposition, too, describes a single photon
in those two pulses: for example, the Hadamard basis states are |±〉 = |0〉|1〉±|1〉|0〉√

2
.

– More generally, if we have k= k1 +k0 photons in two different pulses (two modes),
where k1 photons are in one pulse and k0 photons are in the other pulse, we write
|k1〉|k0〉. Subscripts are added for specifying the types of pulses—for example,
|k1〉t1 |k0〉t0 for the two time bins t1, t0, or |k1〉A|k0〉B for the two arms A,B.

– For describing more than two pulses (namely, more than two modes), we use gener-
alized notations: for example, k= k2+k1+k0 photons in three time bins are denoted
|k2〉t2 |k1〉t1 |k0〉t0 . In particular, the vacuum state (absence of photons) is denoted |0〉
for one mode, |0〉|0〉 for two modes, |0〉|0〉|0〉 for three modes, and so on.

The above notations assume the photon polarizations (which are an internal degree
of freedom) to be identical for all k photons. However, a single photon in a single pulse
generally has two orthogonal polarizations: horizontal ↔ and vertical �. For each pulse,
the two polarizations are described as two modes; therefore, m pulses mean 2m modes.

In this paper, we denote polarization modes of k= k1+k0 photons by |k1,k0〉 (with-
out any subscript), and denote only pulse modes by |k1〉|k0〉 (always with subscripts).
Thus:

– For a single pulse, the two polarization modes describe a qubit if there is exactly
one photon in the pulse. The computational basis states are |0〉 = |0,1〉 (represent-
ing one photon in the horizontal polarization mode and zero photons in the vertical
polarization mode) and |1〉= |1,0〉 (where the single photon is in the vertical mode).

– Similarly to the above, we can also describe: (a) superpositions; (b) the state |k1,k0〉
of k = k1 + k0 photons in those two polarization modes (k1 photons in the vertical
mode and k0 photons in the horizontal mode); and (c) the vacuum state |0,0〉.
We have seen that the Fock space notations extend much beyond the ideal single-

qubit world, which is represented by the two-dimensional space Span{|0〉, |1〉}. Ideally,
in BB84, Alice should send a qubit in this two-dimensional space; however, in practice,
Alice sometimes sends states in a higher-dimensional Fock space.

The “Photon-Number Splitting” (PNS) attack [5,6] (which showed all QKD experi-
ments done until around 2000 to be insecure) is based on analyzing the six-dimensional
Hilbert space Span{|0,0〉, |0,1〉, |1,0〉, |0,2〉, |2,0〉, |1,1〉}, which represents all typical
pulses with two polarizations if we can neglect the case of three or more photons—
namely, if we assume k1 +k0 ≤ 2. The PNS attack is based on three observations [5,6]:
(a) Alice sometimes sends two-photon pulses in one of the four allowed polarizations;
(b) Eve can, in principle, distinguish a two-photon pulse from a single-photon pulse
without influencing the polarizations; and (c) Eve can, in principle, split such a two-
photon pulse into two pulses, each containing a single photon, without influencing the
polarizations. Thus, Eve can “steal” a single photon from each such two-photon pulse
(without influencing the other photon), save it, and, after learning the basis, get full

1 The notations |0〉, |1〉, |±〉 are used for the standard qubit (in a two-dimensional Hilbert space).
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information about this pulse without being noticed. This attack could have been detri-
mental to the security of QKD, but counter-measures [13,17,23,30] have been found
later.

2.2 Imperfections of Bob’s Detectors

Two important examples of imperfections (see [10]) are highly relevant to various
“Reversed-Space” attacks. As we show in this paper, those two imperfections must
be combined for understanding the “Bright Illumination” attack.

Imperfection 1: Our realistic assumption, which is true for standard detectors in QKD
implementations, is that Bob’s detectors cannot count the number of photons in a pulse.
Thus, they cannot distinguish all Fock states |k〉 from one another, but can only distin-
guish the Fock state |0〉 (a lack of photons) from the Fock states {|k〉 : k ≥ 1}. Namely,
standard detectors can only decide whether the mode is empty (k= 0) or has at least one
photon (k > 0). In contrast, we assume that Eve can (in principle) do anything allowed
by the laws of quantum physics; in particular, Eve may have such “photon counters”.

In particular, let us assume that there are two pulses, each of them consisting of a
single mode. Bob cannot know whether a pulse contains one photon or two photons;
therefore, he cannot distinguish between |1〉|0〉 and |2〉|0〉 (and, similarly, he cannot
distinguish between |0〉|1〉 and |0〉|2〉). For example, assume that Alice sends the |1〉|0〉
state (a qubit) to Bob, and Eve replaces Alice’s state by |2〉|0〉 and sends it to Bob instead
(or, similarly, assume that Eve replaces |0〉|1〉 by |0〉|2〉). In this case, Bob cannot notice
the change, and no error can occur; still, Bob got a state he had not expected to get. It
may be possible for Eve to take advantage of this fact in a fully-designed attack.

Imperfection 2: Our realistic assumption is that Bob cannot know exactly when the
photon he measured arrived. For example (in a polarization-based implementation):

– Alice’s ideal qubit arrives at time t (states denoted |0,1〉t |0,0〉t+δ , |1,0〉t |0,0〉t+δ ).
– Eve’s photon may arrive at time t + δ (states denoted |0,0〉t |0,1〉t+δ ,

|0,0〉t |1,0〉t+δ ).

Again, Eve may take advantage of this fact in a fully-designed attack.
Similar imperfections can be found if Bob cannot know exactly what the wavelength

of the photon is, or where the photon arrives.

The conceptual difference between the two imperfections is in whether Bob can (ide-
ally) avoid measuring the extra states sent by Eve, or not:

– In Imperfection 1, Eve may send more than one photon, and Bob must measure the
state (while he cannot count the number of photons using current technology).

– In Imperfection 2, Eve sends states in two separate subsystems. Bob can, in princi-
ple, ignore the “wrong” subsystem in case he knows for sure it has not been sent by
Alice.
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3 The “Bright Illumination” Attack

The “Bright Illumination” blinding attack [18] works against QKD systems that use
Avalanche Photodiodes (APDs) as Bob’s detectors. As an example, we describe below
the implementation of this attack against a system implementing the BB84 protocol in
a polarization-based scheme, but it is important to note that the attack can be adapted to
most QKD protocols and implementations that use APDs [18].

The APDs can be operated in two “modes of operation”: the “linear mode” that
detects only a light beam above a specific power threshold, and “Geiger mode” that
detects even a single photon (but cannot count the number of photons). In this attack, the
adversary Eve sends a continuous strong light beam towards Bob’s detectors, causing
them to operate only in the linear mode (thus “blinding” the detectors).

After Bob’s detectors have been blinded (and in parallel to sending the continuous
strong beam, making sure they are kept blind), Eve performs a “measure-resend” attack:
she detects the qubit (single photon) sent by Alice, measures it in one of the two bases
(exactly as Bob would do), and sends to Bob a strong light beam depending on the state
she measured, a little above the power threshold of the detectors. For example, if Eve
measures the state |1,0〉, she sends to Bob the state |k,0〉 for k� 1. Now, if Bob chooses
the same basis as Eve, he will measure the same result as Eve; and if Bob chooses a
different basis, he will measure nothing, because the strong light beam will get split
between the two detectors. This means that Bob will always either measure the same
result as Eve or lose the bit.

In the end, Bob and Eve have exactly the same information, so Eve can copy Bob’s
classical post-processing and get the same final key as Alice and Bob do. Moreover,
Eve’s attack causes no detectable disturbance, because Bob does not know that his
detectors have operated in the wrong mode of operation; the only effect is a loss rate of
50% (that is not problematic: the loss rate for the single photons sent by Alice is usually
much higher, so Eve can cause Bob to get the same loss rate he expects to get).

This attack was both developed and experimentally demonstrated against commer-
cial QKD systems by [18]. See [18] for more details and for diagrams.

4 “Reversed-Space” Attacks

The “Reversed-Space” methodology, described in [8,10,11], is a theoretical framework
of attacks exploiting the imperfections of Bob. This methodology is a special case (eas-
ier to analyze) of the more general methodology of “Quantum Space” attacks [8,9], that
exploits the imperfections of both Alice and Bob; the “Reversed-Space” methodology
assumes Alice to be ideal and only exploits Bob’s imperfections [4,8,10,11]. (Another
special case of a “Quantum Space” attack is the PNS attack [5,6] described above.)

In the ideal QKD protocol, Bob expects to get from Alice a state in the Hilbert space
H A; however, in the “Reversed-Space” attack, Bob gets from Eve an unexpected state,
residing in a larger Hilbert space called the “space of the protocol” and denoted by H P.
In principle, Eve could have used a huge space H ′ such that H A ⊆ H P ⊆ H ′: the
huge Hilbert space H ′ consists of all the quantum states that Eve can possibly send to
Bob, but it is too large, and most of it is irrelevant.
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Because “Reversed-Space” attacks assume a “perfect Alice” (sending prefect
qubits), it is usually easy to find the relevant subspace H P, as we demonstrate by
three examples below; H P is only enlarged (relative to the ideal space H A) by Bob’s
imperfections. Therefore, H P is the space that includes all the states that may be useful
for Eve to send to Bob. The space H P is defined by taking all the possible measurement
results of Bob and reversing them in time; more precisely, it is the span of all the states
in H A and all the states that Eve can send to Bob so that he gets the measurement
results she desires.

Whether Bob is aware of it or not, his experimental setting treats not only the states
in H A, but all the possible inputs in the “space of the protocol” H P. Bob then classifies
them into three classes: (1) valid states from Alice, (2) losses, and (3) invalid states.
Valid states are always treated in conventional security analysis: a random subset is
compared with Alice for estimating the error rate, and then the final key is obtained
using the error correction and privacy amplification processes. Losses are expected,
and they are not counted as noise. Invalid states are usually counted as errors (noise),
but they do not appear in ideal analyses of ideal protocols. We note that loss rate and
error rate are computed separately: the error rate must be small (e.g., around 10%) for
the protocol not to be aborted by Alice and Bob, while the loss rate can be much higher
(even higher than 99%). Any “Reversed-Space” attack takes advantage of the possibility
that Bob treats some states in H P in the wrong way, because he does not expect to get
those states.

Eve’s attack is called “Reversed-Space” because Eve can devise her attack by look-
ing at Bob’s possible measurement results: Eve finds a measurement result she wants
to be obtained by Bob (because he interprets it in a way desired by her) and reverses
the measurement result in time for finding the state in H P she should send to Bob. In
particular, if Bob applies the unitary operation UB on his state prior to his measurement,
Eve should apply the inverted operation U −1

B =U †
B to each state corresponding to each

possible measurement outcome of Bob.
We present three examples of “Reversed-Space” attacks. For simplicity, we only

consider BB84 implemented in a polarization-based scheme (as described in Sect. 2),
but the attacks may be generalized to other implementations, too. We emphasize that all
three examples have been chosen to satisfy two conditions, also satisfied by the “Bright
Illumination” attack: (a) Eve performs a “measure-resend” attack in a basis she chooses
randomly, and (b) it is possible for Eve to get full information without inducing noise.

Example 1 (a special case of the “Trojan Pony” attack [12]): This example exploits
Imperfection 1 and assumes Bob uses an “active” basis choice (see Sect. 2 for both).

In this attack, Eve performs a “measure-resend” attack—namely, she measures each
qubit state sent from Alice to Bob in a random basis, and resends “it” towards Bob.
However, instead of resending it as a single photon, she resends a huge number of
photons towards Bob: she sends many identical photons, all with the same polarization
as the state she measured (|0〉, |1〉, |+〉, or |−〉). If Bob chooses the same basis as Eve,
he will get the same result as her, because Imperfection 1 causes his system to treat
the incoming states |0,k〉 and |k,0〉 (for any k ≥ 1) as if they were |0,1〉 and |1,0〉,
respectively; but if he chooses a different basis from Eve, both of his detectors will
(almost surely) click. If Bob decides to treat this invalid event (a two-detector click) as
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an “error”, the error rate will be around 50%, so Alice and Bob will abort the protocol;
but if he naively decides to treat this event as a “loss”, Eve can get full information
without inducing errors.

Alice sends an ideal qubit (a single photon), while Eve may send any number of
photons. Therefore, using the Fock space notations, H A = H2 � Span{|0,1〉, |1,0〉}
and H P = Span{|m1,m0〉 : m1,m0 ≥ 0}.

Example 2 (a special case of the “Faked States” attack [8,19,20]): This attack exploits
Imperfection 2 (Sect. 2). We assume that Bob has four detectors (namely, that he uses
the “passive” basis choice variant of the polarization-based encoding; see Sect. 2), and
that his detectors have different (but overlapping) time gates during which they are sen-
sitive: given the three different times t0 < t1/2 < t1, the detectors for the computational
basis are sensitive only to pulses sent at t0 or t1/2 (or in between), and the detectors for
the Hadamard basis are sensitive only to pulses sent at t1/2 or t1 (or in between). Alice
normally sends her pulses at t1/2 (when both detectors are sensitive), but Eve may send
her pulses at t0, t1/2, or t1.

Eve performs a “measure-resend” attack by measuring Alice’s state in a random
basis, and resending it towards Bob as follows: if Eve measures in the computational
basis, she resends the state at time t0; and if she measures in the Hadamard basis, she
resends the state at time t1. Therefore, Bob gets the same result as Eve if he measures
in the same basis as hers, but he gets a loss otherwise (because Bob’s detectors for the
other basis are not sensitive at that timing). This means that Eve gets full information
without inducing any error.

Using the same notations as in Imperfection 2, the state |m1,m0〉t0 |n1,n0〉t1/2

|o1,o0〉t1 consists of the Fock states |m1,m0〉 sent at time t0, |n1,n0〉 sent at time t1/2,
and |o1,o0〉 sent at time t1. Alice sends an ideal qubit (a single photon at time t1/2),
while Eve may send a single photon at any of the times t0, t1/2, or t1, or a superposition.

Therefore, H A = H2 � Span{|0,0〉t0 |0,1〉t1/2
|0,0〉t1 , |0,0〉t0 |1,0〉t1/2

|0,0〉t1} and

H P = Span{|0,1〉t0 |0,0〉t1/2
|0,0〉t1 , |1,0〉t0 |0,0〉t1/2

|0,0〉t1 , |0,0〉t0 |0,1〉t1/2
|0,0〉t1 ,

|0,0〉t0 |1,0〉t1/2
|0,0〉t1 , |0,0〉t0 |0,0〉t1/2

|0,1〉t1 , |0,0〉t0 |0,0〉t1/2
|1,0〉t1}.

Example 3 (the “Fixed Apparatus” attack [4]) can be applied by Eve if Bob uses a
“passive” basis choice (Sect. 2). In this attack, Eve sends to Bob an unexpected state,
and this state “forces” Bob to obtain the basis Eve wants. This attack makes it possible
for Eve to force Bob choose the same basis as her (and, therefore, get the same outcome
as her), thus stealing the whole key without inducing any errors or losses. The attack
is only possible if Eve has a one-time access to Bob’s laboratory, because it requires
Eve to first compromise Bob’s device (otherwise, she cannot send him that unexpected
state).

Assume that Bob uses a polarization-independent beam splitter that splits the
incoming beam into two different output arms (as described in Sect. 2). This beam
splitter has two input arms: a regular arm, through which the standard incoming beam
comes, and a blocked arm, where the incoming state is always assumed to be the zero-
photon beam |0,0〉 (the vacuum state of two polarizations). If Eve can drill a small
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hole in Bob’s device, exactly where the blocked arm gets its input from, then she can
send a beam to the blocked arm and not only to the standard arm. It is proved [4] that
Eve can then cause the beam splitter to choose an output arm to her desire, instead
of choosing a “random” arm. The state |m1,m0〉r|n1,n0〉b consists of the Fock state
|m1,m0〉 sent through the regular arm of the beam splitter and the Fock state |n1,n0〉
sent through the blocked arm. Alice sends an ideal qubit (a single photon through
the regular arm), while Eve may send a single photon through any of the two arms
or a superposition. Therefore, H A = H2 � Span{|0,1〉r|0,0〉b , |1,0〉r|0,0〉b} and
H P = Span{|0,1〉r|0,0〉b , |1,0〉r|0,0〉b , |0,0〉r|0,1〉b , |0,0〉r|1,0〉b}.

5 Quantum Side-Channel Attacks

Shamir’s “Quantum Side-Channel Attack” on Polarization-Based QKD: The follow-
ing attack was proposed by Adi Shamir in a meeting with one of the authors (T.M.)
around 1996–1999 [26], and it may have never been published (but see similar attacks
below). Shamir’s attack only applies to QKD implementations that use “active” basis
choice (as opposed to the “passive” basis choice, which leads to the “Fixed Appara-
tus” attack described in Example 3 of Sect. 4). The attack is related to Imperfection 2
described in Sect. 2: Bob’s apparatus must be fully or partially ready to receive Alice’s
photon before it arrives. For example, if the photon is supposed to arrive at time t, then
Bob’s setup is already partially ready at time t −δ ; in particular, Bob decides the basis
choice and configures the polarizing beam splitter accordingly before time t − δ . The
attack also assumes that the detectors themselves are still inactive (blocked) at time
t−δ , and are activated just before time t. Therefore, at time t−δ , the polarizing beam
splitter is already configured to match the required basis (the computational basis or the
Hadamard basis), while the detectors are still blocked.

Eve’s attack is sending a strong pulse at time t − δ , that hits the polarizing beam
splitter (but not the blocked detectors) and gets reflected back to Eve, containing full
or partial information on the direction of the polarizing beam splitter—and, thus, on
the basis choice. Assuming Eve gets the information on Bob’s basis choice before she
receives Alice’s pulse, Eve could employ the following full attack: Eve measures the
photon coming from Alice in the same basis chosen by Bob, learns the qubit’s value,
and resends to Bob the resulting state (in the same basis), obtaining full information
while inducing no errors and no losses.

One can suggest two ways to possibly prevent the attack: (a) opening the detection
window (activating the detectors) shortly after the polarizing beam splitter is configured
according to the basis choice (if the time difference is sufficiently short, Eve cannot find
Bob’s basis choice on time for employing the full attack); or (b) blocking access to the
polarizing beam splitter until the detectors are activated (although this solution may be
hard to implement).

As we explain in Sect. 6, the “Bright Illumination” attack could have been pre-
dicted by adding Imperfection 1 described in Sect. 2 (namely, detection of multi-photon
pulses) to the above idea of a strong pulse sent at time t − δ towards Bob (i.e., Imper-
fection 2, as already discussed here) and using the Fock space notations.
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“Conventional Optical Eavesdropping” and “Quantum Side-Channel Attacks”: Other
attacks, similar to Shamir’s attack, have been independently developed—for example,
the “Large Pulse” attack [29], which attacks both Alice’s and Bob’s set-ups. As written
in [29]: “This [large pulse] attack is one of the possible methods of conventional opti-
cal eavesdropping, a new strategy of eavesdropping on quantum cryptosystems, which
eliminates the need of immediate interaction with transmitted quantum states. It allows
the eavesdropper to avoid inducing transmission errors that disclose her presence to the
legal users.”

Instead of restricting ourselves to “conventional optical eavesdropping on quantum
cryptosystems”, we make use of a different sentence from [29]—“eavesdropping on
quantum cryptosystems which eliminates the need of immediate interaction with trans-
mitted quantum states”—and we define “quantum side-channel attacks” as follows:

A quantum side-channel attack is any eavesdropping strategy which eliminates the
need of any immediate interaction with the transmitted quantum states.

According to the above definition, both Shamir’s attack and the “Large Pulse” attack
are “quantum side-channel attacks”, because they attack the devices and not the quan-
tum states themselves. On the other hand, the “Reversed-Space” attacks and the “Quan-
tum Space” attacks (see Sect. 4) can be fully described using a proper description of the
QKD protocol, which uses the Fock space notations; therefore, they should not be con-
sidered as “quantum side-channel attacks”. In fact, we can say they are complementary
to “quantum side-channel attacks”, and we name them “state-channel attacks”.

In a classical communication world, the notion of “side-channel attacks” makes use
of any information leaked by the physical execution of the algorithm (see, for exam-
ple, [14]). Accordingly, other researchers (e.g., [24]) have chosen to adopt a wide defi-
nition of “quantum side-channels”, which also includes the “Photon-Number Splitting”
attack and many other practical attacks. However, we prefer to take a narrower view of
“quantum side-channel attacks”, as explained above.

6 From Practice to Theory: The Possibility of Predicting the
“Bright Illumination” Attack

The “Bright Illumination” attack could have been predicted, because it simply combines
Imperfections 1 and 2 that were described in Sect. 2: namely, detecting many photons
at time t − δ , while the single “information” photon should have arrived at time t. In
some sense, it seems to merge a “Reversed-Space” attack and a “quantum side-channel
attack”, because it attacks both the transmitted quantum states and the detectors them-
selves. However, because Bob’s detectors are fully exposed to Eve at both times t and
t−δ (unlike the “Large Pulse” attack [29], where the detectors are not exposed at time
t − δ ), we see the “Bright Illumination” attack as a special (and fascinating) case of
“Reversed-Space” attack, and not as a “quantum side-channel attack”.

The “Bright Illumination” attack is made possible by a lack of information on the
“space of the protocol” H P: Eve sends many photons (as in Imperfection 1) at time
t −δ (as in Imperfection 2), and Bob does not notice her disruption because he cannot
count the number of photons and cannot block the detectors at time t−δ .
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For preventing all the possible attacks and proving full security, it must be known
how Bob’s detectors treat any number k of photons sent to him by Eve, and it must also
be known how Bob’s detectors treat multiple pulses. In particular, a detector definitely
cannot operate properly in the hypothetical scenario where an infinite number of pho-
tons (with infinite energy) arrives as its input. A potentially secure system must have an
estimated threshold N, such that if k � N photons arrive, they are correctly measured
by the detectors (treated as one photon), and if k � N photons arrive, the measurement
result is clearly invalid and is known to Bob (for example, smoke comes out of the
detectors, or the detectors are burned). N is estimated, so there is a small unknown
range near it.

Prior to the “Bright Illumination” attack, it seems that no systematic effort has been
invested in finding or approximating the threshold N and characterizing the detectors’
behavior on all possible inputs (any number of photons k). A proper “Reversed-Space”
analysis would have suggested that experimentalists must check what N is and fully
analyze the behavior of Bob’s detectors on each quantum state; such an analysis would
then have found the “space of the protocol” H P which is available for Eve’s attack.

A careful “Reversed-Space” analysis—if it had been carried out—would then have
found that instead of one estimated threshold N (with some small unknown range
around it), there are two estimated thresholds N1,N2, such that N1 < N2, with a some
small unknown range around each of them, and a large difference between them. There-
fore, there are three main ranges of the numbers of photons k: (a) for k � N1 photons,
Bob’s detectors work well (and click if at least one photon arrives); (b) for N1 � k � N2

photons, it would have become known that some strange phenomena happen—for
example, that Bob’s detectors switch to the “linear mode”; and (c) for k � N2 photons,
Bob’s detectors malfunction (e.g., the detectors are burned).

Thus, surprisingly, even if the experimentalist had not known about the two modes
of operation (“Geiger mode” and the “linear mode”) existing for each detector, he or
she could still have discovered the two different thresholds N1,N2 and then investigated
the detectors’ behavior in the middle range N1 � k � N2. This would have allowed
him or her to discover the “linear mode” and realize that there is also a need to check
multiple pulses for finding the correct “space of the protocol” and for analyzing the
security against “Reversed-Space” attacks. Namely, the “Reversed-Space” approach
makes it possible to discover attacks even if the detectors are treated as a black box
whose internal behavior is unknown. By theoretically trying to prove security against
any theoretical “Reversed-Space” attack, it would have been possible to find the prac-
tical “Bright Illumination” attack; it would have even been possible to study the oper-
ation of a “black-box” detector and discover, for example, that it has a “linear mode”
of operation (even if this mode of operation had not been already known for realistic
detectors).

7 Conclusion

We have seen a rare example (in quantum information processing) where experiment
preceded theory. We can see now that this experimental attack could have been theoret-
ically predicted: for a system to be secure, Bob must be sure that Eve cannot attack by
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sending an unexpected number of photons, and he must know what happens to his detec-
tors for any number of photons. Otherwise—Eve can attack; and we could have known
that this may be possible. We have also defined the general notion of “quantum side-
channel attacks”, distinguishing “state-channel attacks” (including “Reversed-Space”
and “Quantum Space” attacks) that interact with the transmitted (prepared or measured)
quantum states, from “quantum side-channel attacks” that do not interact with the trans-
mitted quantum states.
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