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Abstract

The counter-intuitive features of quantum mechanics make it possible to solve problems

and perform tasks that are beyond the abilities of non-quantum (classical) computers

and communication devices. The field of quantum information processing studies how

we can achieve such improvements by representing information as quantum states.

One of the early achievements of quantum information processing is the development

of quantum key distribution (QKD). QKD protocols allow two participants (Alice and

Bob) to achieve the classically-impossible task of generating a secret shared key even if

their adversary is computationally unlimited.

Unfortunately, the security promises of QKD are true only in theory; practical

implementations of QKD deviate from the theoretical protocols, and many of these

deviations give rise to practical attacks. In this research thesis, we study the security

properties of various QKD protocols in many practical settings:

First, we study practical security of semiquantum key distribution (SQKD) protocols,

where either Alice or Bob is non-quantum (classical). Following practical security

problems in previous SQKD protocols, we suggest a new SQKD protocol (the “Mirror

protocol”) which can be securely implemented, and we prove it robust and secure against

a wide range of attacks (the “uniform collective attacks”).

Then, we study “composable security” of the first QKD protocol created by Bennett

and Brassard (BB84). BB84 has its unconditional security proved against adversaries

performing the most general attacks in a theoretical (idealized) setting; however, some

security approaches do not prove “composable security”, which requires the secret key

to remain secret even when Alice and Bob actually use it for cryptographic purposes.

We generalize an algebraic security approach for BB84, making it prove composable

security of BB84 (and many variants of BB84) against the most general attacks.

Finally, we analyze an important practical attack (named “Bright Illumination”),

showing how it can be modeled as a theoretical “Reversed-Space” attack.

Overall, all results aim to enhance our understanding on how to bridge the gap

between theory and practice in various sub-fields of QKD, and they may help solve a

major open problem in the field of QKD: constructing a realistic QKD implementation

that can be proved truly and unconditionally secure against any possible attack.
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Chapter 1

Introduction to Quantum

Information Processing

The field of quantum information processing (QIP) uses the laws of quantum physics

for performing tasks that are impossible (or hard) in the non-quantum world.

In this chapter, we describe the basic notions of QIP that are used in this thesis.

See [NC00, Gru99, RP00, GMD02] for more background and explanations about QIP.

1.1 Quantum States

In QIP, information is represented by quantum states. A quantum state is the state

of a specific physical system; all possible quantum states of the system belong to a

Hilbert space, which is defined as a vector space over the field C (the field of complex

numbers) that has an inner product and satisfies the “completeness” property (the exact

definition of this property can be found in standard textbooks, and it is satisfied by all

finite-dimensional inner product spaces). A quantum pure state is represented by |ψ〉,
which denotes a normalized column vector (namely, a column vector of norm 1) in the

Hilbert space. In other words, the Hilbert space is the set of all possible quantum pure

states of a system (including the non-normalized states).

As an important example, the qubit Hilbert space is H2 , Span{|0〉, |1〉}, where

|0〉 and |1〉 are two orthonormal vectors (namely, they are normalized, and their inner

product is 0). Two other important orthonormal states in H2 are |+〉 , |0〉+|1〉√
2

and

|−〉 , |0〉−|1〉√
2

. The most general qubit pure state is |ψ〉 = α|0〉+ β|1〉, where α, β ∈ C
and |α|2 + |β|2 = 1 (a normalization condition). The qubit states are sometimes denoted

by their vector representations in the {|0〉, |1〉} basis: |0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
,

|+〉 = 1√
2

(
1

1

)
, |−〉 = 1√

2

(
1

−1

)
, and |ψ〉 =

(
α

β

)
. We note that {|0〉, |1〉} is an

orthonormal basis named “the z basis”, “the computational basis”, or “the standard

basis”, and {|+〉, |−〉} is an orthonormal basis named “the x basis” or “the Hadamard

3



basis”. We also note various notations of both bases: the states of the z basis are

sometimes denoted {|00〉, |10〉} or {|0〉0, |1〉0}, and the states of the x basis are sometimes

denoted {|01〉, |11〉} or {|0〉1, |1〉1}.
We note that multiplying a pure state |ψ〉 by any global phase eiφ , cos(φ) + i sin(φ)

has no physical significance. In other words, two pure states that differ only by a global

multiplicative phase eiφ are identical for all intents and purposes.

The |ψ〉 notation (the column vector) is named ket. A related notation, 〈ψ|, is named

bra, and it is a row vector defined by 〈ψ| , [|ψ〉]†: namely, the bra is the conjugate

transpose of the ket. For example, if |ψ〉 = α|0〉+ β|1〉, then 〈ψ| = α?〈0|+ β?〈1| (where

α? is the complex conjugate of α); in vector notations, 〈ψ| =
(
α? β?

)
.

Given an orthonormal basis {|ψ1〉, |ψ2〉, . . . , |ψm〉}, the inner product of two pure

states |ψ〉 =
∑m

j=1 αj |ψj〉 and |φ〉 =
∑m

j=1 βj |ψj〉 is 〈ψ|φ〉 ,
∑m

j=1 α
?
jβj . The norm of |ψ〉

is |||ψ〉|| ,
√
〈ψ|ψ〉 =

√∑m
j=1 |αj |2, and |ψ〉 is said to be normalized if

∑m
j=1 |αj |2 = 1.

1.1.1 Quantum Measurements

Quantum physics allows us to measure a quantum state |ψ〉 with respect to any

orthonormal basis {|ψ1〉, |ψ2〉, . . . , |ψm〉}. The possible measurement outcomes are all

states “ψj” of this orthonormal basis; each outcome “ψj” (corresponding to the quantum

state |ψj〉) is obtained with probability pj = |〈ψj |ψ〉|2. Note that
∑m

j=1 pj = 〈ψ|ψ〉 = 1.

Also note that a measurement result “ψj” is a classical (non-quantum) indicator that can

be read and used; we have not discussed the resulting quantum state after measurement,

but we should note that the original quantum state |ψ〉 may be ruined (or change its

state) following the measurement operation.

For example, if the quantum state |ψ〉 = α|0〉+ β|1〉 is measured with respect to the

orthonormal basis {|0〉, |1〉} (namely, it is “measured in the z basis”), the “0” result is

obtained with probability |〈0|ψ〉|2 = |α|2, and the “1” result is obtained with probability

|〈1|ψ〉|2 = |β|2. Notice that the normalization condition |α|2 + |β|2 = 1 means that

these two probabilities sum to 1.

There are also generalized definitions of quantum measurements (see, e.g., in [NC00]),

but they can all be reduced to the set of quantum operations described in Section 1.4.

1.1.2 Unitary Operators

Quantum physics allows us to apply any unitary operator U : H → H to a quantum state

in the Hilbert space H. Unitary operators are linear operators (namely, U [α|ψ〉+β|φ〉] =

αU |ψ〉+ βU |φ〉) that satisfy U † = U−1. They preserve inner products and norms.

As an important example, the Hadamard operator on the qubit space is defined by

H , 1√
2

(
1 1

1 −1

)
: namely, H|0〉 = |+〉 and H|1〉 = |−〉. It also satisfies H|+〉 = |0〉

and H|−〉 = |1〉.
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1.2 Bipartite and Multipartite Hilbert Spaces

1.2.1 Tensor Products of Hilbert Spaces

Given two physical systems, A and B, we would like to mathematically represent the

compound physical system AB (comprised of two subsystems: A and B), given that a

quantum state of subsystem A is represented by a vector in the Hilbert space HA, and

a quantum state of subsystem B is represented by a vector in the Hilbert space HB.

In this case, a quantum state of the compound (bipartite) system AB is represented

by a vector in the tensor product Hilbert space HA⊗HB. An orthonormal basis for this

Hilbert space can be a product of two orthonormal bases for HA and HB: namely, if

{|ψ1〉A, |ψ2〉A, . . . , |ψk〉A} is an orthonormal basis for HA, and {|φ1〉B, |φ2〉B, . . . , |φm〉B}
is an orthonormal basis for HB, then {|ψj〉A ⊗ |φ`〉B | 1 ≤ j ≤ k , 1 ≤ ` ≤ m} is an

orthonormal basis for HA ⊗HB.

As an important example, if A and B are both qubit systems (namely, HA and

HB are both H2 , Span{|0〉, |1〉}), the compound two-qubit system is represented by

H2 ⊗ H2 = Span{|0〉 ⊗ |0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗ |0〉 , |1〉 ⊗ |1〉}. A shorter notation is

H2 ⊗H2 = Span{|00〉, |01〉, |10〉, |11〉}.
The tensor product of three or more Hilbert spaces (giving a multipartite Hilbert

space) is similarly defined. For example, H2 ⊗H2 ⊗H2 (a tripartite Hilbert space that

is the three-qubit space) is

Span{|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉}. (1.1)

1.2.2 Tensor Products of Vectors

Given two Hilbert spaces, HA with an orthonormal basis {|ψ1〉A, |ψ2〉A, . . . , |ψk〉A}
and HB with an orthonormal basis {|φ1〉B, |φ2〉B, . . . , |φm〉B}, and given two vectors

|ψ〉A =
∑k

j=1 αj |ψj〉A ∈ HA and |φ〉B =
∑m

`=1 β`|φ`〉B ∈ HB, the tensor product vector

|ψ〉A ⊗ |φ〉B ∈ HA ⊗HB (or, using a shorter notation, |ψ〉A|φ〉B) is defined as

|ψ〉A|φ〉B ,
k∑
j=1

m∑
`=1

(αj |ψj〉A)⊗ (β`|φ`〉B) =

k∑
j=1

m∑
`=1

αjβ`|ψj〉A|φ`〉B. (1.2)

For example, given |ψ〉A = α|0〉A + β|1〉A ∈ H2 and |φ〉B = γ|0〉B + δ|1〉B ∈ H2, the

tensor product vector |ψ〉A|φ〉B ∈ H2 ⊗H2 is

|ψ〉A|φ〉B = αγ|00〉AB + αδ|01〉AB + βγ|10〉AB + βδ|11〉AB. (1.3)

An example is

|+−〉AB =

[
|0〉A + |1〉A√

2

]
⊗
[
|0〉B − |1〉B√

2

]
=

1

2
[|00〉AB−|01〉AB+|10〉AB−|11〉AB]. (1.4)
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We note that most states in HA ⊗HB are not tensor product vectors, and are thus

called entangled. Four important entangled two-qubit states (that form together an

orthonormal basis of H2 ⊗H2, named the Bell basis or the BMR basis) are:

|Φ+〉 ,
|00〉+ |11〉√

2
, |Φ−〉 ,

|00〉 − |11〉√
2

, (1.5)

|Ψ+〉 ,
|01〉+ |10〉√

2
, |Ψ−〉 ,

|01〉 − |10〉√
2

. (1.6)

The definition of the tensor product is easily generalized to tensor products of three

(or more) vectors: for example,

|+0−〉ABC =

[
|0〉A + |1〉A√

2

]
⊗ |0〉B ⊗

[
|0〉C − |1〉C√

2

]
=

1

2
[|000〉ABC − |001〉ABC + |100〉ABC − |101〉ABC]. (1.7)

1.2.3 Tensor Products of Operators

Given two linear operators, U operating on the Hilbert space HA and V operating on

the Hilbert space HB, the linear operator U ⊗V operates on the Hilbert space HA⊗HB

and is defined as follows:

(U ⊗ V )(|ψ〉A ⊗ |φ〉B) , (U |ψ〉A)⊗ (V |φ〉B). (1.8)

(It extends by linearity to vectors that are not tensor products, such as |00〉AB+|11〉AB√
2

.)

For example, the tensor product of the Hadamard operator H with itself, denoted

H ⊗H or H⊗2, operates as follows:

H⊗2|00〉AB = (H|0〉A)⊗ (H|0〉B) = |++〉AB , (1.9)

H⊗2|01〉AB = (H|0〉A)⊗ (H|1〉B) = |+−〉AB , (1.10)

H⊗2|10〉AB = (H|1〉A)⊗ (H|0〉B) = |−+〉AB , (1.11)

H⊗2|11〉AB = (H|1〉A)⊗ (H|1〉B) = |−−〉AB . (1.12)

This definition is generalized to tensor products of three (or more) operators.

1.3 Quantum Mixed States

A quantum mixed state is a probability distribution over several pure states: namely, it

is a set {(|ψj〉, qj)}j consisting of pairs of pure states |ψj〉 and probabilities qj (where

0 < qj ≤ 1 and
∑

j qj = 1), meaning that each pure state |ψj〉 has probability qj .

Unlike a pure state, a mixed state is not represented by a vector in Hilbert space. It

is represented by a density matrix: ρ =
∑

j qj |ψj〉〈ψj |, where qj is the probability of

the pure state |ψj〉. (This definition of qj should not be confused with the probabilities
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of measurement results, mentioned in Subsection 1.1.1.) In particular, the pure state

|ψ〉 is represented by the density matrix ρ = |ψ〉〈ψ|.
For example, if the system is prepared in state |0〉 with probability 1

3 or in state

|+〉 with probability 2
3 , the corresponding quantum mixed state has density matrix

ρ = 1
3 |0〉〈0|+

2
3 |+〉〈+|. It should be emphasized that these probabilities are of preparation,

not of any measurement. For example, if this state is measured in the z basis {|0〉, |1〉},
the probability of measuring “0” is 1

3 · 1 + 2
3 ·

1
2 = 2

3 , and the probability of measuring

“1” is 1
3 · 0 + 2

3 ·
1
2 = 1

3 ; and if the state is measured in the x basis {|+〉, |−〉}, the

probability of measuring “+” is 1
3 ·

1
2 + 2

3 · 1 = 5
6 , and the probability of measuring “−”

is 1
3 ·

1
2 + 2

3 · 0 = 1
6 . Notice that the probability of measuring “0” is not 1

3 , and the

probability of measuring “+” is not 2
3 .

We note that several different probability distributions may represent the same mixed

state: namely, the states they represent are physically identical (e.g., giving exactly the

same measurement results in all orthonormal bases). This happens if and only if they

are represented by equal density matrices. (A similar observation is that a global phase

eiφ for pure states has no physical significance; and, indeed, the two pure states |ψ〉
and eiφ|ψ〉 are represented by identical density matrices, ρ = |ψ〉〈ψ|.) For example, the

completely mixed state ρ = 1
2 |0〉〈0|+

1
2 |1〉〈1| is the same as ρ = 1

2 |+〉〈+|+
1
2 |−〉〈−|, and

these two density matrices are equal.

A density matrix must always satisfy three conditions: (a) it is a Hermitian matrix;

(b) it is positive semidefinite; and (c) it is normalized (namely, its trace equals 1).

These three conditions are also sufficient : any matrix ρ satisfying them is a density

matrix. From these conditions it follows that any density matrix ρ can be presented as

ρ =
∑

j λj |ψj〉〈ψj | (the spectral decomposition), where λj ≥ 0,
∑

j λj = 1, and {|ψj〉}j
is an orthonormal set (of eigenvectors); in other words, for any mixed state we can

choose a corresponding probability distribution over a set of orthonormal states. For

example, for ρ = 1
3 |0〉〈0|+

2
3 |+〉〈+|, the spectral decomposition is

ρ =
3 +
√

5

6

[
2|0〉+ (

√
5− 1)|1〉√

10− 2
√

5

][
2〈0|+ (

√
5− 1)〈1|√

10− 2
√

5

]

+
3−
√

5

6

[
2|0〉 − (

√
5 + 1)|1〉√

10 + 2
√

5

][
2〈0| − (

√
5 + 1)〈1|√

10 + 2
√

5

]
, (1.13)

and it is the unique decomposition of ρ as a mixture of orthonormal pure states; on

the other hand, the completely mixed state ρ = 1
2 |0〉〈0|+

1
2 |1〉〈1| =

1
2 |+〉〈+|+

1
2 |−〉〈−|

has an infinite number of decompositions as a mixture of orthonormal pure states,

because its eigenvalue (12) is degenerate—namely, it has two orthonormal eigenvectors

corresponding to the same eigenvalue.

The probability distribution in the definition of mixed states represents the “standard”

(“classical”) notion of uncertainty, and not a quantum phenomenon: it simply represents

a lack of knowledge. Nonetheless, mixed states naturally appear in many areas of QIP. For
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example, if a joint system AB is in the entangled pure state
√

1
3 |0〉A|0〉B +

√
2
3 |1〉A|+〉B,

the quantum state of subsystem B is the mixed state ρ = 1
3 |0〉B〈0|B + 2

3 |+〉B〈+|B
(see Subsection 1.3.2 for details about this computation) that we have seen before.

Moreover, we note that the state of the joint system AB can also be represented as√
5
6 |+〉A

2|0〉B+|1〉B√
5
−
√

1
6 |−〉A|1〉B; thus, the state of subsystem B can also be represented

as ρ = 5
6

[
2|0〉B+|1〉B√

5

] [
2〈0|B+〈1|B√

5

]
+ 1

6 |1〉B〈1|B. This is another example of multiple

probability distributions corresponding to the same mixed state.

We should note an important difference between pure states and mixed states:

for a pure state |ψ〉, there exists an orthonormal basis (consisting of |ψ〉 itself and

states orthonormal to it) such that if we measure |ψ〉 in this basis, we obtain a specific

measurement result (“ψ”) for certain. This claim is never true for a mixed state ρ: if

we measure ρ in any orthonormal basis, the measurement result is always uncertain.

1.3.1 Quantum Operations on Mixed States

Two important results (that can be mathematically proved) are:

• If we measure a mixed state ρ in some orthonormal basis {|ψ1〉, |ψ2〉, . . . , |ψm〉},
we get the measurement result “ψj” with probability pj = 〈ψj | ρ |ψj〉.

• If we apply a unitary operator U to a mixed state ρ, the resulting state is the

mixed state UρU †.

1.3.2 Partial Trace: Removing (Ignoring and Forgetting) a Subsystem

Sometimes, we would like to compute the quantum state of a specific subsystem, while

ignoring and forgetting the other subsystems. For example, given a tripartite quantum

state ρABE (shared by three parties named Alice (A), Bob (B), and Eve (E)), we may

want to ignore the two subsystems A,B and look only at the state of Eve’s subsystem E.

In other words, we may want to assume that subsystems A,B will never be accessible

to Eve (maybe they will be measured by Alice and Bob, who will then forget the

measurement results or keep them secret) and find the state ρE of subsystem E.

The mathematical operation corresponding to this scenario is the partial trace. The

partial trace of a bipartite state ρXY over subsystem X is defined as follows:

ρY = trX(ρXY) ,
∑
|x〉∈X

〈x| ρXY |x〉 , (1.14)

where X is an arbitrary orthonormal basis of the Hilbert space HX corresponding to

subsystem X. The result of this computation is the quantum state ρY of subsystem Y.

In the above example, the partial trace of ρABE over subsystems A,B is:

ρE = trAB(ρABE) ,
∑

|a〉∈A,|b〉∈B

〈a| 〈b| ρABE |a〉 |b〉, (1.15)
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where A,B are some arbitrary orthonormal bases of the Hilbert spaces HA,HB corre-

sponding to subsystems A,B.

For example, the partial trace of the two-qubit pure state |ψ〉XY =
√

1
3 |0〉X|−〉Y +√

2
3 |1〉X|+〉Y over subsystem X is

ρY = trX(|ψ〉XY〈ψ|XY) =
1

3
|−〉Y〈−|Y +

2

3
|+〉Y〈+|Y, (1.16)

and the partial trace of the same state |ψ〉XY over subsystem Y is

ρX = trY(|ψ〉XY〈ψ|XY) =
1

3
|0〉X〈0|X +

2

3
|1〉X〈1|X. (1.17)

More details about the partial trace are available in standard QIP textbooks (e.g., [NC00]).

1.4 List of Allowed Quantum Operations

1. measuring the state with respect to an orthonormal basis (Subsection 1.1.1);

2. applying a unitary operator (Subsection 1.1.2);

3. adding a new (ancillary) subsystem; and

4. removing (ignoring and forgetting) a subsystem (Subsection 1.3.2).

1.5 Trace Distance

The trace distance between two quantum states is, informally, a measure of their

distinguishability. This measure is very useful for security definitions of quantum key

distribution protocols (see details in Subsection 2.3.1).

The trace distance of two states ρ and σ is defined as follows:

D(ρ, σ) ,
1

2
tr |ρ− σ| = 1

2

∑
j

|λj |, (1.18)

where {λj}j are the eigenvalues of ρ− σ, all of which are real numbers. (We note that

|A| is defined as
√
A†A.) In other words, the trace distance D(ρ, σ) is one half of the

sum of absolute values of the eigenvalues of ρ− σ.

1.5.1 The Information-Theoretical Meaning of the Trace Distance

It can be proved [FvdG99, BBBGM02] that the trace distance D(ρ, σ) between two

quantum states ρ and σ upper-bounds the Shannon Distinguishability between ρ and σ.

The Shannon Distinguishability is defined as the classical mutual information between

the random variable T ,

0 The quantum state is ρ

1 The quantum state is σ
and the random variable X (the
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result of a measurement), maximized over all possible quantum measurements (including

measurements consisting of adding an ancillary state, performing a general unitary

transformation, and then measuring in some orthonormal basis).

In other words, the trace distance upper-bounds the information that some user,

who holds a quantum state and does not know whether it is ρ or σ (it can be either ρ

or σ, with equal probabilities), can find by using a measurement.

Examples:

• D(|0〉〈0|, |1〉〈1|) = 1, because the two quantum states |0〉 and |1〉 can be distin-

guished for certain by measuring in the z basis {|0〉, |1〉}.

• D(|0〉〈0|, |0〉〈0|) = 0, because the two quantum state |0〉 and |0〉 are identical, so

they cannot be distinguished from each other at all.
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Chapter 2

Introduction to Quantum Key

Distribution

The properties of quantum mechanics permit cryptographic protocols that are more

secure than standard (“classical” or “non-quantum”) protocols. Quantum key distribu-

tion (QKD) protocols allow two users, conventionally named Alice and Bob, to generate

a secret shared key. This thesis is devoted to studying security properties of QKD

protocols.

In this chapter, we describe relevant existing knowledge in the research field of QKD.

In particular, we discuss security definitions of QKD and the notion of semiquantum

key distribution (SQKD) protocols.

2.1 Motivation: Unsolved Encryption Problems in a Non-

Quantum World

Cryptography is the science of protecting security and correctness of data against

adversaries. One of the most important cryptographic problems is encryption—namely,

transmitting a secret message from a sender (Alice) to a receiver (Bob), and ensuring

the adversary (Eve) cannot read it. Two main encryption methods are used today:

• Symmetric-key cryptography, in which the same secret key is used by both Alice

and Bob: Alice uses the secret key for encrypting her message, and Bob uses the

same secret key for decrypting the message. Several examples of symmetric-key

ciphers are the Advanced Encryption Standard (AES) [DR13], the older Data

Encryption Standard (DES), and one-time pad (“Vernam cipher”).

• Public-key cryptography [DH76], in which a public key (known to everyone) and

a secret key (known only to Bob) are used: Alice uses the public key for en-

crypting her message, and Bob uses the secret key for decrypting the message.

Several examples of public-key ciphers include RSA [RSA78] and elliptic curve

cryptography.
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However:

• Current public-key cryptography is not formally proved secure; moreover, its

security is only computational—namely, it relies on computational hardness of spe-

cific problems, such as integer factorization and discrete logarithm. Furthermore,

factorization and discrete logarithm can both be efficiently solved on a quantum

computer by using Shor’s factorization algorithm [Sho94, Sho99]; therefore, if a

scalable quantum computer is successfully built in the future, it will break security

of many public-key ciphers, including RSA and elliptic curve cryptography.

• Symmetric-key cryptography requires Alice and Bob to share a secret key in

advance: namely, if Alice and Bob want to share a secret message, they must

share a secret key beforehand. Moreover, no computational security proofs are

known for many current symmetric-key ciphers, including AES and DES; and

unconditional security against computationally-unlimited adversaries has been

proved to require many resources: the secret key must be used only once and be

at least as long as the secret message [Sha49].

Nonetheless, there exist ciphers that are fully and unconditionally secure (even against

computationally-unlimited adversaries). For example, the one-time pad (symmetric-

key) cipher is defined as follows: given a message M and a secret key K of the same

length, the encrypted message C is computed as the XOR between M and K—namely,

C = M ⊕K (decryption can then be performed by computing M = C ⊕K). One-time

pad has been proved fully and unconditionally secure against any adversary [Sha49]:

even if the adversary Eve intercepts the encrypted message C, she gains no information

on the original message M (assuming she has no information on the secret key K; in

particular, assuming K is used only once).

Therefore, for achieving perfectly secure encryption, we only need an efficient way for

sharing a random secret key between Alice and Bob—a task named “key distribution”.

Unfortunately, unconditionally secure “classical [non-quantum] key distribution” is

impossible if the computationally-unlimited adversary can listen to all communication

between Alice and Bob. Fortunately, quantum key distribution can solve this problem.

2.2 Quantum Key Distribution

Quantum key distribution (QKD) protocols allow Alice and Bob to generate a shared

random key. Typically, they require Alice and Bob to use two communication channels:

(a) an insecure quantum channel (to which Eve may apply any operation allowed by

the laws of quantum physics), and (b) an unjammable classical channel (to which Eve

may listen, but not interfere). Eve listens to both channels and tries obtaining as much

information as she can on the final shared key.

For most QKD protocols, the final key is proved to be secret even from the most

powerful adversaries—adversaries who are limited only by the laws of nature and
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who are otherwise capable of solving any computational problem and performing any

physically-allowed operation. Moreover, the final key is proved to remain secret in the

future, even if Eve improves her computational power and other capabilities.

After creating the shared key, Alice and Bob can use it for other cryptographic

tasks (e.g., one-time pad encryption). More generally, QKD protocols can be used as a

subroutine (secure key distribution) of more complicated cryptographic protocols; in

other words, we can integrate QKD into a system to improve its security. See [SML10]

for more details about this integration and the practical usability of QKD compared to

other methods.

2.2.1 The QKD Protocol of Bennett and Brassard (BB84)

The first and most important QKD protocol, suggested by Bennett and Brassard in

1984, is BB84 [BB84].

In the BB84 protocol, in each round, Alice randomly chooses one of the four possible

“BB84 (qubit) states” {|0〉, |1〉, |+〉, |−〉} and sends it to Bob. Bob randomly chooses one

of two orthonormal bases (z or x, both defined in Section 1.1) and measures the state

in his chosen basis. If Bob chooses the same basis as Alice (assuming that Eve did not

interfere), Bob will get the same result as Alice; and if Bob chooses a different basis

from Alice (assuming, again, that Eve did not interfere), Bob will get a random result

(each result with probability 1
2). For example, if Alice sends |+〉 and Bob measures it in

the x basis, he will get the “+” result for certain; but if Bob measures it in the z basis,

he will get a random result (either “0” or “1”).

After sending and receiving N qubits (in N rounds), Alice and Bob perform “classical

post-processing” (namely, they process their results in a coordinated way, exchanging

information via the unjammable classical channel), comprised of the following steps:

1. Alice and Bob expose and compare the bases they chose and discard the qubits

for which they chose different bases.

2. Alice and Bob expose and compare a randomly chosen subset of their bits (named

“the TEST bits”), check the error rate in this subset, and abort the protocol if the

error rate is above a specific threshold. The remaining bits are “the INFO bits”.

3. Alice and Bob perform error correction and privacy amplification processes on the

INFO bits, so that both of them have the same bit string (the final key) and Eve’s

average information about it is negligible—namely, exponentially small in N .

Full definitions of BB84 and several variants are available in Sections 6.2 and 7.1.

2.2.2 Types of QKD Protocols

Many QKD protocols have been suggested over the years. We should note three

important classifications:
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1. BB84 and similar protocols are “prepare-and-measure” protocols, because the

legitimate parties prepare quantum states, transmit them, and measure them.

In contrast, in “entanglement-based” QKD protocols, an untrusted center gives

the legitimate parties allegedly-entangled quantum states (see Subsection 1.2.2),

and the legitimate parties test them and use them for generating a secret key.

“Entanglement-based” protocols were first discussed by [Eke91, BBM92], and they

are usually almost equivalent to “prepare-and-measure” protocols [BBM92].

2. BB84 and similar protocols are “one-way” protocols, because each quantum state

travels once from one legitimate party to the other—for example, from Alice to

Bob. In contrast, “two-way” protocols [BLMR13] require each quantum state

to travel twice between the legitimate parties—for example, from Bob to Alice

and back to Bob; examples of two-way protocols include the semiquantum key

distribution protocols discussed in Section 2.4 and Chapters 3–5.

3. All QKD protocols discussed in this thesis are “discrete-variable” protocols,

because they use finite-dimensional Hilbert spaces (or, more generally, discrete

random variables). In contrast, “continuous-variable” QKD protocols use different

techniques; see [SBPCDLP09, XMZLP20, PAB+20] for more details.

2.3 Security and Robustness of QKD

2.3.1 Security Definitions and Composable Security

The main objective of analyzing a QKD protocol is proving its unconditional security :

proving that even if Eve applies the strongest and most general attacks allowed by the

laws of nature (named the “joint attacks”), Eve’s average information about the final

key is still negligible—namely, exponentially small in the number of rounds.

Originally, a QKD protocol was defined “secure” if the (classical) average mutual

information between Eve’s final measurement result (E) and Alice’s and Bob’s final

shared key (K)1, maximized over all possible attack strategies and measurements

by Eve, was exponentially small in the number of rounds N . Examples of BB84

security proofs based on this security definition include [May01, BBBMR06, SP00]:

these security proofs recognized that one cannot analyze the classical data held by

Eve before privacy amplification (as was done in [BBCM95]), but must analyze Eve’s

quantum state [BMS96]. In other words, they assumed Eve could keep her quantum

state until the end of the protocol, and only then choose the optimal measurement

(based on all the data she observed) and perform this measurement.

Later, it was noticed that this security definition might not be “composable”. In

other words, although the final key itself is secure if Eve measures the quantum state

1More precisely, the security definition referred to Alice’s final key (A), and a separate condition
(reliability) required Bob’s final key to be identical to Alice’s final key, except with negligible probability.
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she holds at the end of the QKD protocol, the proof does not apply to cryptographic

applications of the final key (e.g., encryption): Eve may gain non-negligible information

after the key is used, even though her information on the key itself was negligible.

This means that the above definition is not sufficient for practical applications: such

applications may be insecure if Eve keeps her quantum state until Alice and Bob use

the final key (thus giving Eve some new information) and only then measures.

Therefore, a new notion of “(composable) full security” was defined [BOHLMO05,

RGK05, Ren08], following similar definitions of universally composable security in non-

quantum cryptography [Can01, PW00], and using the trace distance (see Section 1.5).

Intuitively, this notion requires that the final joint quantum state of Alice, Bob, and Eve

generated by the QKD protocol is very close (namely, the trace distance is exponentially

small in N) to the final state generated by an ideal key distribution protocol which

distributes a completely random and secret final key to both Alice and Bob. In other

words, if a QKD protocol is (composably) secure, then except with an exponentially

small probability, one of the two following events happens: the QKD protocol is aborted,

or the QKD protocol generates a secret key with the same properties as a perfect key—

(a) uniformly distributed (i.e., each possible key has the same probability), (b) identical

for Alice and Bob, and (c) independent of Eve’s information.

Formally:

• ρABE is defined as the final quantum state of Alice, Bob, and Eve at the end of

the protocol: Alice’s and Bob’s quantum states are simply the “classical” states

|kA〉A, |kB〉B, where the bit strings kA, kB are the final keys held by Alice and

Bob, respectively (ideally, kA = kB); and Eve’s state includes both her quantum

ancillary state and the classical information sent over the classical channel.

• ρU is defined as the complete mixture of all possible final keys that are identical

for Alice and Bob. Namely, if the set of possible final keys is K, then:

ρU ,
1

|K|
∑
k∈K
|k〉A|k〉B〈k|A〈k|B. (2.1)

• ρE is defined as the partial trace of ρABE over the system AB; the definition of

the partial trace is available in Subsection 1.3.2.

For the QKD protocol to be fully (composably) secure, the definition requires the

following trace distance (see Section 1.5) to satisfy

1

2
tr |ρABE − ρU ⊗ ρE| ≤ ε, (2.2)

where ε is exponentially small in the number of rounds N . Intuitively, ρABE is the

actual joint state of Alice, Bob, and Eve at the end of the QKD protocol; ρU is the ideal

final state of Alice and Bob (an equal mixture of all possible final keys, that is identical
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for Alice and Bob and completely uncorrelated with Eve); and ρE is the state of Eve,

uncorrelated with the states of Alice and Bob. Note that cases where the protocol is

aborted are represented by the zero operator: see [Ren08, Subsection 6.1.2] for details.

We note that non-composable security does not imply composable security: in

an example found by [KRBM07], the final key satisfied the non-composable security

definition, but it could not be securely used even for the one-time pad encryption scheme

described in Section 2.1. However, it was shown by [BOHLMO05] that if the mutual

information (used in the non-composable security definition) is bounded by µ2, and the

final key is uniformly random and identical for Alice and Bob except with probability
µ1
2 , then the trace distance (used in the composable security definition) can be bounded

by 2max(m)/2√µ2 + µ1 (where max(m) is the maximal length of the final key given the

number of rounds N).

Using this general bound of [BOHLMO05], if µ2 is exponentially small in the final

key length m and the exponential decay is sufficiently fast, composable security can

sometimes be proved; however, this general bound sometimes does not imply composable

security, and it is usually non-tight: better bounds can usually be directly found for

special cases, similarly to the other bounds suggested by [BOHLMO05] and to the bounds

found in Chapters 6 and 7. (We note that the results of [KRBM07] and [BOHLMO05] are

consistent with each other: in the example given by [KRBM07], the mutual information

is exponentially small in m, while the trace distance is constant, and [BOHLMO05]’s

non-tight upper bound on the trace distance grows exponentially with m.)

Composable security proofs have been presented for many QKD protocols, including

BB84 [RGK05, Ren08].

2.3.2 Collective, “Uniform Collective”, and Joint Attacks

Our ultimate objective is proving security of QKD against the most general attacks Eve

can possibly apply. However, the most general attacks can be very complicated, so we

usually first analyze an important and powerful subclass of attacks named the “collective

attacks” [BM97b, BM97a, BBBGM02]. It is sometimes easier to prove security against

collective attacks than security against the most general attacks; moreover, security

against collective attacks is conjectured (and, in some security notions, proved [Ren08,

CKR09]) to imply security against the most general attacks.

Intuitively, in a collective attack, Eve begins by attacking each round separately,

and she uses a separate probe state (ancillary state) for each round. These probe states

cannot be entangled or correlated with each other, but Eve can keep them in a quantum

memory. Later, after Alice and Bob have completed classical post-processing, Eve can

measure all her probe states together in the optimal way. A formal description of the

collective attacks against BB84-like protocols is available in Subsection 6.3.1.

The definition of the “collective attacks” is slightly different in some papers (most

notably, [Ren08, RGK05, CKR09]): these papers require Eve not only to attack the
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rounds separately and independently, but they also require her to attack them identically

(namely, she must apply the same operation in each round). To avoid confusion, we call

this specific type of collective attacks “uniform collective attacks”.

The class of the “joint attacks” includes all theoretical attacks allowed by quantum

physics (namely, these are the most general attacks). A formal description of the joint

attacks against BB84-like protocols is available in Subsection 7.2.2.

2.3.3 Different Approaches for Security Proofs

We discuss four different approaches for proving unconditional security of QKD protocols:

1. The approach of Mayers [May01] gave the first security proof of a QKD protocol

(BB84). This approach proves non-composable security against the most general

theoretical attacks.

2. The approach of Biham, Boyer, Boykin, Mor, and Roychowdhury (BBBMR)

[BBBMR06] (which follows previous works by similar authors [BM97b, BM97a,

BBBGM02]) proves security of BB84 by connecting the information Eve obtains

and the disturbance she induces in the opposite (conjugate) basis (see Subsec-

tion 7.2.4). This proof algebraically bounds the trace distance between two possible

density matrices held by Eve, and it proves non-composable security against the

most general theoretical attacks. In Chapter 7 we adapt this approach to prove

composable security.

Security against collective attacks was proved using similar techniques [BBBGM02]

that were later improved [BGM09]; in Chapter 6 we make this proof composable.

3. The approach of Shor and Preskill [SP00] proves security of BB84 by analyzing a

different, entanglement-based protocol (see Subsection 2.2.2). This protocol uses

quantum error correction and entanglement purification, so it requires Alice and

Bob to use a quantum computer (unlike BB84); it was earlier proved secure by Lo

and Chau [LC99], and then Shor and Preskill [SP00] proved it equivalent to BB84,

implying security of BB84. This approach proves non-composable security against

the most general theoretical attacks, but later work [BOHLMO05, KRBM07]

showed it could be easily modified to prove composable security.

4. The approach of Renner [RGK05, Ren08] proves security of various QKD protocols

by bounding entropies, min-entropies, and max-entropies appearing in the proto-

cols, and it uses reductions from standard prepare-and-measure QKD protocols to

entanglement-based QKD protocols. This approach proves composable security

against the most general theoretical attacks.

In Chapters 6 and 7 of this thesis, we strengthen BBBMR’s security approach [BBBMR06,

BGM09] by making it prove composable security. This security approach has various

advantages and disadvantages compared to other approaches. On the one hand, it is
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mostly self-contained, while other security approaches require many results from other

areas of quantum information (such as various notions of entropy needed for Renner’s

approach, and entanglement purification and quantum error correction needed for Shor

and Preskill’s approach); it gives tight finite-key bounds, unlike several other methods

(as detailed below); and, at least in some sense, it is simpler than other proof techniques.

On the other hand, it is currently limited to BB84-like protocols.

BBBMR’s approach gives explicit and tight finite-key bounds. In contrast to this,

Shor and Preskill’s approach proves only asymptotic security (for infinitely long keys).

For Renner’s approach, tight finite-key bounds identical to the ones found by BBBMR’s

approach have been obtained for several protocols, including BB84 [TLGR12]; but at

first Renner’s approach gave very pessimistic bounds (using de Finetti’s theorem [Ren08,

Ren07]); later, the bounds were improved for several protocols, including BB84 [SR08];

and finally, tight bounds have been obtained (see [TLGR12] for comparison).

We note that existence of many different proof techniques is important, because

some proofs may be more adjustable to various QKD protocols or practical scenarios;

some proofs may be clearer to different readers with different backgrounds; analyzing the

differences between the proofs and between their obtained results may lead to important

insights on the strengths and weaknesses of various techniques; and existence of many

proofs makes the security result more certain and less prone to errors.

2.3.4 Robustness Definitions of QKD

A notion much weaker than security is the robustness of a QKD protocol [BKM07]. A

QKD protocol is completely robust if any non-zero information obtained by Eve on the

INFO string implies a non-zero probability that Alice and Bob find errors in the TEST

bits. In other words, if a protocol is completely robust, Eve cannot obtain any useful

information without causing errors that may be noticed by Alice and Bob. Robustness

does not imply full security (it does not imply secrecy of Alice and Bob’s final key after

classical post-processing), but it is an important step towards proving security.

To the other extreme, complete non-robustness means Eve can get full information

without inducing even one error. The two practical attacks described in Subsection 2.5.3

imply their respective protocols to be completely non-robust.

2.4 Semiquantum Key Distribution

Semiquantum key distribution (SQKD) protocols assume either Alice or Bob is a classical

party [BKM07]. Therefore, these protocols answer a theoretically interesting question:

“how quantum” must a QKD protocol be to achieve secure key distribution? We already

know fully classical key distribution is impossible (see Section 2.1), and we know fully

quantum key distribution is possible; the existence of SQKD protocols can show that

key distribution remains feasible even if one party is classical. Furthermore, SQKD
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protocols may be easier to implement, so they may also have practical importance.

In SQKD protocols, the classical party can only use “classical” operations—and,

in particular, it can prepare states and perform measurements only in the z basis and

not in the x basis. For example, consider a practical implementation where |0〉 and

|1〉 represent two different pulses traveling through the same path one after the other:

in this case, the z basis {|0〉, |1〉} represents classical photon pulses, while the x basis

{|+〉, |−〉} represents quantum superpositions of classical pulses. The classical party can

manipulate classical photon pulses in the z basis, but cannot manipulate superpositions.

The first SQKD protocol was named “QKD with Classical Bob” [BKM07, BGKM09].

In this protocol, in each round, Alice sends to Bob a randomly chosen state of the four

BB84 states {|0〉, |1〉, |+〉, |−〉}, but Bob is limited to two “classical” operations:

1. CTRL: Bob returns the qubit to Alice undisturbed.

2. SIFT: Bob measures the qubit in the z basis and resends to Alice the qubit state

he measured.

Bob randomly chooses one of these operations, and Alice measures the returning qubit

in the basis she sent it. After N qubits have been sent and received (in N rounds),

Alice publicly announces her basis choices for each round, and Bob publicly announces

his choices (CTRL or SIFT) for each round. Then, Alice and Bob check the error rates

in the CTRL bits and in a random subset of the SIFT bits, aborting if they are too

high. Finally, Alice and Bob perform error correction and privacy amplification on the

remaining SIFT bits sent by Alice in the z basis, so that they have an identical final key

that is completely secret. We note that only SIFT bits are used for generating the final

key; CTRL bits are used only for security checks. This protocol was proved completely

robust [BKM07] and secure [Kra15b].

Later, [ZQLWL09] suggested a simpler SQKD protocol named “QKD with Classical

Alice” (the name is following [BM11]). In this protocol, in each round, Bob sends to

Alice the |+〉 state, and Alice randomly chooses one of the two “classical” operations

(CTRL or SIFT) and returns the resulting state to Bob. Bob then measures the

received qubit in a randomly chosen basis (z or x), and Alice and Bob proceed almost

identically to “QKD with Classical Bob”. This protocol was proved completely robust

by [BM11], and the proof was extended by [BM10] to include photonic implementations

and multi-photon pulses.

Other SQKD protocols have also been suggested, including [LC08, SDL13, YYLH14,

Kra15a, ZQZM15]; note that most SQKD protocols are required to be two-way protocols

(see Subsection 2.2.2) to overcome the limitations of the classical user. Most SQKD

protocols have been proven robust, and a few of them also have security analyses [Kra15b,

Kra16, ZQM18, Kra18].
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2.5 Practical Implementations of QKD Protocols

2.5.1 The Fock Space Notations

Quantum cryptographic protocols are usually implemented with photons. However,

standard qubit notations do not describe all possible photon operations and do not

properly represent the actual operations of Alice and Bob; as a result, qubit notations

do not cover all possible attacks. To correct notations, we must replace the qubit Hilbert

space H2 , Span{|0〉, |1〉} by an extended Hilbert space—the “Fock space” F :

• In the simplest case, there are m ≥ 0 photons, all of them belonging to one

photonic mode. Here, the Fock state |m〉 represents m photons in this single mode:

|0〉 is the vacuum state, representing no photons in that mode; |1〉 represents one

photon in that mode; |2〉 represents two photons in that mode; and so on.

• For describing several different pulses of photons (for example, photons traveling

through different paths or at different times, or any other external degree of free-

dom), we need several photonic modes. For example, a single photon in one of two

pulses (and, thus, in one of two modes) describes one qubit, and the z basis states

of this qubit are {|0〉 = |0〉 ⊗ |1〉 ≡ |0〉|1〉 , |1〉 = |1〉 ⊗ |0〉 ≡ |1〉|0〉}. (These two

states are mathematically described as tensor products, but we omit the ⊗ sign for

brevity.) A linear combination describes one photon in a superposition of the two

pulses: for example, the x basis states are
{
|+〉 = |0〉|1〉+|1〉|0〉√

2
, |−〉 = |0〉|1〉−|1〉|0〉√

2

}
.

• More generally, for describing m = m1 +m0 photons in two different pulses (two

modes), where m1 photons are in one pulse and m0 photons are in the other pulse,

we write |m1〉|m0〉. We add subscripts to specify the type of pulse—for example,

|m1〉t1 |m0〉t0 for the two times t1, t0, or |m1〉A|m0〉B for the two paths A,B.

• For describing more than two pulses (more than two modes), we use generalized

notations: for example, m = m2 +m1 +m0 photons traveling at times t2, t1, t0 are

denoted |m2〉t2 |m1〉t1 |m0〉t0 . In particular, the vacuum state (absence of photons)

is denoted |0〉 for one mode, |0〉|0〉 for two modes, |0〉|0〉|0〉 for three modes, etc.

All the above notations assume identical photon polarizations (which are an internal

degree of freedom) for all m photons. However, a single photon in a single pulse generally

has two orthogonal polarizations: horizontal ↔ and vertical l. The two polarizations

are described as two modes for each pulse, so k pulses mean 2k modes.

In this thesis (except Chapters 3–5, for the reasons explained in Section 3.2),

polarization modes of m = m1+m0 photons are denoted |m1,m0〉 without any subscript,

while pulse modes are denoted |m1〉|m0〉 with subscripts. Thus:

• If there is exactly one photon in a single pulse, its two polarization modes represent

one qubit. The z basis states of this qubit are |0〉 = |0, 1〉 (representing one photon
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in the horizontal polarization mode and zero photons in the vertical polarization

mode) and |1〉 = |1, 0〉 (where the single photon is in the vertical mode).

• A linear combination describes one photon in a superposition of those two polariza-

tion modes: for example, the x basis states are
{
|+〉 = |0,1〉+|1,0〉√

2
, |−〉 = |0,1〉−|1,0〉√

2

}
.

• The |m1,m0〉 state represents m = m1 + m0 photons in those two polarization

modes: m1 photons in the vertical mode and m0 photons in the horizontal mode.

In particular, the vacuum state |0, 0〉 represents an absence of any photon.

Formally, for two polarization modes, the entire 2-mode Fock space is:

F , Span{|m1,m0〉 | m1 ≥ 0 , m0 ≥ 0}, (2.3)

where the |m1,m0〉 state represents m1 indistinguishable photons in the |1〉 mode and

m0 indistinguishable photons in the |0〉 mode.

Similarly, a single photon in the |+〉 mode may be written as |0, 1〉x, and a single

photon in the |−〉 mode may be written as |1, 0〉x. The entire 2-mode Fock space can

be represented as

F = Span{|m−,m+〉x | m− ≥ 0 , m+ ≥ 0}, (2.4)

where the |m−,m+〉x state represents m− indistinguishable photons in the |−〉 mode

and m+ indistinguishable photons in the |+〉 mode.

2.5.2 Experimental Implementations of Polarization-Based QKD

The BB84 protocol may be experimentally implemented in a “polarization-based” im-

plementation, that we can model as follows: the quantum particles sent by Alice to Bob

are single photons whose polarizations encode the quantum states. The four possible

states sent by Alice are |0〉, |1〉, |+〉, and |−〉, where |0〉 = |↔〉 (a single photon in the

horizontal polarization) and |1〉 = |l〉 (a single photon in the vertical polarization). The

|+〉 = |↗↙〉 and |−〉 = |↖↘〉 states correspond to orthogonal diagonal polarizations.

For measuring the incoming photons, Bob uses a polarizing beam splitter (PBS) and

two detectors. Bob actively configures the PBS for choosing his random measurement

basis (z or x). If the PBS is configured for measurement in the z basis, it sends any

horizontally polarized photon to one path and any vertically polarized photon to the

other path. At the end of each path we place a detector, which clicks whenever it detects

a photon. Therefore, the detector at the first path clicks only if the |0〉 mode is detected,

and the detector at the second path clicks only if the |1〉 mode is detected; a diagonally

polarized photon (|+〉 = |↗↙〉 or |−〉 = |↖↘〉) would cause exactly one of the detectors

(uniformly random) to click. Similarly, if the PBS is configured for measurement in the

x basis, it distinguishes |+〉 from |−〉. This implementation (using an “active” basis
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choice) may be slow, because Bob needs to randomly choose a basis for each arriving

photon.

A variant of this implementation uses a “passive” basis choice (e.g., [KZH+02]). This

variant uses one polarization-independent beam splitter, two PBSs, and four detectors.

The polarization-independent beam splitter is placed in the front, and it randomly

sends each photon to one path or to another. A photon going to the first path is then

measured (as described above) in the z basis, while a photon going to the second path

is measured (as described above) in the x basis. We note that in this “passive” variant,

the basis is chosen “randomly” by the polarization-independent beam splitter, and Bob

does not have to actively choose it; however, it is exposed to the “Fixed Apparatus”

attack [BGM14] (see Example 3 of Section 8.4).

The above implementations of QKD are further discussed in Chapter 8.

2.5.3 Practical Attacks

The security promises of QKD are true in theory, but its practical security is far

from being guaranteed: practical implementations of QKD use realistic photons, so

they deviate from the theoretical protocols based on ideal qubits. These deviations

make possible various attacks (see [LCT14, SBPCDLP09]), similarly to the idea of

“side-channel attacks” in classical computer security.

For example, in the “Photon-Number Splitting” attack [BLMS00] (which assumes the

QKD system is implemented using photons, and assumes the quantum state sent by Alice

should be a single photon), Eve exploits two facts: (a) in most implementations, Alice

sometimes sends to Bob more than one photon (e.g., two photons); and (b) Bob usually

cannot count the number of photons he measures. Thus, for any pulse consisting of two

or more photons, Eve “steals” one of the photons and keeps it in her quantum memory

for a later measurement (after Alice and Bob expose the correct bases), obtaining full

information without being noticed; and she blocks all single-photon pulses.

Another example is the “Bright Illumination” practical attack [LWWESM10]: this

attack uses a weakness of Bob’s measurement devices, allowing Eve to “blind” them

and fully control Bob’s measurement results (full description is available in Section 8.3).

Eve can then get full information on the secret key without inducing any error. An

extensive discussion of this attack is available in Chapter 8.

Possible solutions to these problems include: (a) a much more careful analysis of

practical devices and practical implementations; (b) “Measurement-Device Independent”

QKD protocols [BHM96, Ina02, LCQ12, BP12], which may be secure even if the

measurement devices are controlled by Eve; and (c) “Fully Device Independent” QKD

protocols [MY98, MAP11, VV14], which may be secure even if all quantum devices are

untrusted (under certain assumptions).
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2.6 Hoeffding’s Theorem

The final stages of our security proofs in Chapters 6 and 7 consist mainly of applications

of the following Theorem, proven by Hoeffding in [Hoe63, Section 6]:

Theorem 2.1 (Hoeffding’s Theorem). Let X1, . . . , Xn be a random sample without

replacement taken from a population c1, . . . , cN such that a ≤ cj ≤ b for all 1 ≤ j ≤ N .

(That is, each Xi gets the value of a random cj, such that the same j is never chosen

for two different variables Xi, Xi′.) If X , X1+...+Xn
n and µ , E[X] is the expected

value of X, then:

1. For any ε > 0,

Pr
[
X − µ ≥ ε

]
≤ e−

2nε2

(b−a)2 . (2.5)

2. µ = 1
N

∑N
i=1 ci. Namely, the expected value of X is the average value of the

population.

The following Corollary of Hoeffding’s theorem is useful for proving security:

Corollary 2.2. Let us be given an (n + n′)-bit string c = c1 . . . cn+n′, and assume

that we randomly and uniformly choose a partition of c into two substrings, cA of

length n and cB of length n′. (Formally, this is a random partition of the index set

{1, . . . , n + n′} into two disjoint sets, A and B, satisfying |A| = n, |B| = n′, and

A ∪B = {1, . . . , n+ n′}.) Then, for any p > 0 and ε > 0,

Pr

[(
|CA|
n

> p+ ε

)
∧
(
|CB|
n′
≤ p
)]
≤ e−2

(
n′

n+n′

)2
nε2
, (2.6)

where CA and CB are random variables whose values equal to cA and cB, respectively.

Proof. The random and uniform partition of c into two substrings, cA of length n and

cB of length n′, is actually a sample of size n without replacement from the population

c1, . . . , cn+n′ ∈ {0, 1}. (The sampled n bits are the bits of cA, while the other n′ bits

are the bits of cB.) Therefore, we can apply Hoeffding’s theorem (Theorem 2.1) to this

sampling.

Let X be the average of the sample, and let µ be the expected value of X (so,

according to Theorem 2.1, µ is the average value of the population), then

X =
|CA|
n

, (2.7)

µ =
|CA|+ |CB|
n+ n′

. (2.8)

Then |CB|
n′ ≤ p is equivalent to (n+ n′)µ− nX ≤ n′ · p, and, therefore, to n · (X − µ) ≥
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n′ · (µ− p). This means that the conditions
(
|CA|
n > p+ ε

)
and

(
|CB|
n′ ≤ p

)
rewrite to

(
X − µ > ε+ p− µ

)
∧
( n
n′
· (X − µ) ≥ µ− p

)
, (2.9)

which implies
(
1 + n

n′

)
(X − µ) > ε, which is equivalent to X − µ > n′

n+n′ ε. Using

Hoeffding’s theorem (Theorem 2.1), we get

Pr

[(
|CA|
n

> p+ ε

)
∧
(
|CB|
n′
≤ p
)]
≤ Pr

[
X − µ > n′

n+ n′
ε

]
≤ e−2

(
n′

n+n′

)2
nε2
.

(2.10)

Using Corollary 2.2 for comparing the error rates in different sets of qubits (e.g.,

INFO and TEST bits) is allowed, on the condition that the random and uniform

sampling occurs only after the qubits are sent by Alice and measured by Bob. In other

words, the sampling cannot affect the bases in which the qubits are sent and measured,

and it cannot affect Eve’s attack.

Similar uses of Hoeffding’s theorem for proving security of QKD are available

in [BBBMR06, BGM09].

We also use another Theorem, proven by Hoeffding in [Hoe63, Section 2, Theorem 1]:

Theorem 2.3. Let X1, . . . , XN be independent random variables with finite first and

second moments, such that 0 ≤ Xi ≤ 1 for all 1 ≤ i ≤ N . If X , X1+...+XN
N and

µ , E[X] is the expected value of X, then for any ε > 0,

Pr
[
X − µ ≥ ε

]
≤ e−2Nε2 , (2.11)

and, in a similar way (see [Hoe63, Section 1]),

Pr
[
µ−X ≥ ε

]
≤ e−2Nε2 . (2.12)

We will use the following Corollary of Theorem 2.3 for proving security of the

“efficient BB84” protocol in Subsection 7.3.3:

Corollary 2.4. Let 0 ≤ p ≤ 1 be a parameter, and let b = b1 . . . bN be an N-bit

string, such that each bi is chosen probabilistically and independently out of {0, 1}, with

Pr(bi = 0) = p and Pr(bi = 1) = 1− p. Then:

Pr

(
|b| ≤ (1− p)N

2

)
≤ e−

1
2
N(1−p)2 , (2.13)

Pr

(
|b| ≤ pN

2

)
≤ e−

1
2
Np2 . (2.14)

Proof. Let us define Xi = bi for all 1 ≤ i ≤ N . Then Xi are independent random

variables with finite first and second moments, such that 0 ≤ Xi ≤ 1 for all 1 ≤ i ≤ N
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and µ , E[X] = 1− p. Therefore, using Theorem 2.3, we get the two following results:

Pr

[
(1− p)−X ≥ 1− p

2

]
≤ e−

1
2
N(1−p)2 , (2.15)

Pr
[
X − (1− p) ≥ p

2

]
≤ e−

1
2
Np2 . (2.16)

We notice that X = |b|
N = 1− |b|N . Substituting this result, we get

Pr

[
−|b|
N
≥ −1− p

2

]
≤ e−

1
2
N(1−p)2 , (2.17)

Pr

[
1− |b|

N
− 1 ≥ −p

2

]
≤ e−

1
2
Np2 , (2.18)

and, therefore,

Pr

[
|b| ≤ (1− p)N

2

]
≤ e−

1
2
N(1−p)2 , (2.19)

Pr

[
|b| ≤ pN

2

]
≤ e−

1
2
Np2 . (2.20)

2.7 Notation for Bit Strings

In this thesis, we denote bit strings (of t bits, where t ≥ 0 is some integer) by a bold

letter (e.g., i = i1 . . . it, where i1, . . . , it ∈ {0, 1}); and we refer to these bit strings

as elements of Ft
2—that is, as elements of a t-dimensional vector space over the field

F2 = {0, 1}, where addition of two vectors corresponds to a XOR operation between

them. The number of 1-bits in a bit string s is denoted by |s|, and the Hamming

distance between two strings s and s′ is dH(s, s′) , |s⊕ s′|.

2.8 Structure of this Thesis

First, we discuss a new semiquantum key distribution protocol (the “Mirror protocol”)

that solves a practical security problem:

• In Chapter 3, we present the Mirror protocol and prove it completely robust.

This chapter is based on a 2017 paper we published in Physical Review A [BKLM17].

• In Chapter 4, we discuss a simplified variant of the Mirror protocol and present

several attacks against it, proving this variant to be non-robust.

This chapter is based on a 2018 paper we published in Entropy [BLM18].

• In Chapter 5, we prove security of the Mirror protocol against “uniform collective”

attacks (defined in Subsection 2.3.2).

This chapter is based on a 2020 preprint we posted to the arXiv [KLM20].
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Then, we discuss composable security of generalized BB84 protocols:

• In Chapter 6, we extend [BBBGM02, BGM09] to prove fully composable security

of a variant of BB84 (named “BB84-INFO-z”) against collective attacks.

This chapter is based on a 2020 paper we published in Theoretical Computer

Science [BLM20].

• In Chapter 7, we extend [BBBMR06] to prove fully composable security of several

variants of BB84 against the most general attacks.

Finally, in Chapter 8, we explain how the practical “Bright Illumination” attack [LWWESM10]

can be described as a theoretical “Reversed-Space” attack.

This chapter is based on a 2020 paper we published in the TPNC conference [LM20].
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Chapter 3

The Mirror Protocol and

Robustness Proof

In this chapter, we present an experimental security problem of the currently existing

SQKD protocols. To solve this problem, we suggest a new SQKD protocol (the “Mirror

protocol”) and prove it completely robust.

This chapter is based on a paper published in Physical Review A in 2017 by Michel

Boyer, Matty Katz, Rotem Liss, and Tal Mor [BKLM17].

3.1 Experimental Infeasibility of the SIFT Operation in

SQKD Protocols

In the currently existing SQKD protocols (see Section 2.4), one of the “classical”

operations is SIFT: measuring in the z basis {|0〉, |1〉} and then resending. In practical

(photonic) implementations, and especially if limited to the existing technology, the

SIFT operation is very hard to securely implement, because the generated photon

will probably be at a different timing or frequency, thus leaking information to the

eavesdropper; see details in [TLC09] (which is a comment on [BKM07]) and in the

reply [BKM09].

For example, let us look at the “QKD with classical Alice” protocol implemented

with two classical modes, |0〉 and |1〉, describing two pulses (two distinct time-bins) on a

single arm. The photon can be either in one pulse, in the other, or in a superposition (a

non-classical state). In this case, the SIFT operation requires Alice to measure the two

pulses, generate a single photon in a state depending on the measurement outcome, and

resend it to Bob; on the other hand, Alice can implement the CTRL operation simply by

using a mirror (reflecting both pulses). In this case, it is indeed very difficult for Alice

to regenerate the SIFT photon exactly at the right timing, so that it is indistinguishable

from a CTRL photon.

Furthermore, in [TLC09] it was shown that even if Alice could (somehow) have the
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machinery to perform SIFT with perfect timing, Eve would still be able to attack the

protocol by taking advantage of the fact that Alice’s detectors are imperfect: Eve’s

attack is modifying the frequency of the photon generated by Bob. Alice does not notice

the change in frequency. If Alice performs SIFT, the photon she generates is in the

original frequency; if she performs CTRL, the photon she reflects is in the frequency

modified by Eve. Therefore, if Eve is powerful enough, she can measure the frequency

and tell whether Alice used SIFT or CTRL. If Eve finds out that Alice used SIFT, she

can copy the bit sent by Alice in the z basis; if she finds out that Alice used CTRL, she

shifts the frequency back to the original frequency. (A very similar attack works for other

implementations, too—e.g., for polarization-based or phase-based implementations.)

This “tagging” attack makes it possible for Eve to get full information on the key

without inducing noise.

3.2 The Mirror Protocol

We suggest a new SQKD protocol, similar to “QKD with classical Alice”, that is

experimentally feasible: in the original protocol of “QKD with classical Alice”, Alice

could choose only between two operations (CTRL and SIFT); in our new protocol, that

we name the “Mirror protocol”, Alice may choose between four operations (CTRL,

SWAP-10, SWAP-01, and SWAP-ALL). This protocol avoids the need of using the

infeasible operation SIFT. The two operations SWAP-10 and SWAP-01 correspond to

two possible reflections of pulses by using a controllable mirror; these operations cannot

be described by qubit notations, so below we use 4-level system notations. Our new

protocol is based on the Fock space notations, where the |m1,m0〉 state represents m1

indistinguishable photons in the |1〉 mode and m0 indistinguishable photons in the |0〉
mode1; more details about the Fock space notations are given in Subsection 2.5.1.

This protocol is experimentally feasible and is safe against the “tagging” attack

described in [TLC09]. Moreover, in this chapter we prove the protocol to be completely

robust against an attacker Eve that can do anything allowed by the laws of quantum

physics, including the possibility of sending multi-photon pulses (namely, assuming Eve

may use any quantum state consisting of the two modes |0〉 and |1〉—or, equivalently,

any superposition of the Fock states |m1,m0〉). In Chapter 5 we also prove it secure

against “uniform collective” attacks. An illustration of the protocol is available as

Figure 3.1.

We can describe the new protocol in terms of photon pulses that correspond to

two distinct time-bins, and of a controllable mirror operated by Alice: in this case, the

CTRL operation corresponds to operating the mirror on both pulses (reflecting both

pulses back to the originator, Bob); the SWAP-10 operation corresponds to operating

1In the three “Mirror” chapters of this thesis (Chapters 3–5), we use the |m1,m0〉 notation to denote
two photon pulses (to make notations simpler in case we analyze two or three subsystems, each consisting
of several modes), in contrast to the |m1〉|m0〉 notation used for this purpose in Subsection 2.5.1.
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Figure 3.1: A schematic diagram of the Mirror protocol described in
Section 3.2. This figure was generated by Walter O. Krawec for [KLM20] (Chapter 5).

the mirror only on the |0〉 pulse while measuring the other pulse (and similarly for the

SWAP-01 operation and the |1〉 pulse); and the SWAP-ALL operation corresponds to

measuring all pulses, without reflecting any of them.

For the experimental implementation, we note that a (very slow) mechanically-moved

mirror is trivial to implement; a much faster device can be electronically implemented by

using standard optical elements (that are commonly used in QKD): a Pockels cell (that

can change the polarization of the photon(s) in one of the pulses) and a polarizing beam

splitter (that makes it possible to split the two different pulses into two paths, because

they are now differently polarized). Like other (fast) QKD experimental settings,

implementation is feasible but is not trivial. More details about the experimental

implementation of this protocol are available in [Gur13, Tam14].

Let Alice’s initial probe be in the vacuum state |0, 0〉Aanc , and let us assume that a

single photon is arriving from Bob; thus, the system as a whole can be described as a

4-level system (a single photon in four modes). Alice’s operations are as follows:

I (CTRL) Do nothing:

I|0, 0〉Aanc |m1,m0〉B = |0, 0〉Aanc |m1,m0〉B. (3.1)

S1 (SWAP-10) Swap half of Alice’s probe (the left mode) with the |m1〉B half of

Bob’s state:

S1|0, 0〉Aanc |m1,m0〉B = |m1, 0〉Aanc |0,m0〉B. (3.2)

S0 (SWAP-01) Swap half of Alice’s probe (the right mode) with the |m0〉B half of
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Bob’s state:

S0|0, 0〉Aanc |m1,m0〉B = |0,m0〉Aanc |m1, 0〉B. (3.3)

S (SWAP-ALL) Swap the entire probe of Alice with the entire state |m1,m0〉B of

Bob:

S|0, 0〉Aanc |m1,m0〉B = |m1,m0〉Aanc |0, 0〉B. (3.4)

After each of the three SWAP operations, Alice measures her probe (the |·〉Aanc state)

in the z basis and sends to Bob the |·〉B state. If there is no noise and no eavesdropping,

and if we analyze the “ideal case” (in which exactly one photon is arriving from Bob to

Alice), then each round is described by the four-dimensional Hilbert space

Span{|0, 0〉Aanc |0, 1〉B , |0, 0〉Aanc |1, 0〉B , |0, 1〉Aanc |0, 0〉B , |1, 0〉Aanc |0, 0〉B}, (3.5)

namely, by a four-level system; for our protocol, we use this four-level system instead

of the qubit system used by BB84 and by many other QKD schemes. In the most

general “theoretical attack” (the attack analyzed by standard QKD security proofs),

Eve attacks Alice’s and Bob’s states using any probe of her choice, but she cannot

modify the four-dimensional Hilbert space of the protocol: she can only use these four

levels. However, in practical attacks (as analyzed in our robustness analysis), Eve may

use an extended Hilbert space (the entire Fock space).

While Eve is fully powerful, it is common to assume that Alice and Bob are limited

to use only current technology. In particular, Alice and Bob are limited in the sense that

they cannot count the number of photons in each mode, but can only check whether

a detector corresponding to a specific mode clicks (detects at least one photon in this

mode) or not (detects an empty mode). For our protocol to be practical (and for our

robustness analysis to be stronger), we assume Alice and Bob are indeed limited in that

sense: therefore, when Alice and Bob measure in the z basis, their measurement results

are denoted as k̂1k̂0, where k̂0, k̂1 ∈ {0, 1}. Similarly, when Bob measures in the x basis,

his measurement result is k̂−k̂+, where k̂+, k̂− ∈ {0, 1}.
This limitation leads to the definition of “sum”, as follows: let us look at a measure-

ment result of Alice or Bob (that is 00, 01, 10, or 11). The “sum” of this measurement

result is the number of distinct modes detected to be non-empty during the measurement

(namely, the sum of digits in the measurement result). This definition is summarized in

Table 3.1.

The protocol consists of the following steps:

1. In each of the N rounds, Bob sends to Alice the |+〉B state; Alice randomly chooses

one of her four classical operations (CTRL, SWAP-10, SWAP-01, or SWAP-ALL)

and sends the result back to Bob; and Bob measures the state he receives, choosing

randomly whether to measure in the z basis or the x basis.

2. Alice reveals her operation choices (CTRL, SWAP-x (x ∈ {01, 10}), or SWAP-ALL;
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Table 3.1: The four possible measurement results by Alice or Bob (measuring in the z
basis), depending on the state obtained by him or her (that is represented in the Fock

space notations).

Obtained State Measurement Result “Sum”

|0, 0〉 00 0
|0,m0〉 (m0 ≥ 1) 01 1
|m1, 0〉 (m1 ≥ 1) 10 1

|m1,m0〉 (m1 ≥ 1 , m0 ≥ 1) 11 2

Table 3.2: Interpretations of Bob’s measurement results for CTRL states.

Bob’s Result Interpretation

00 a loss
01 (i.e., |+〉) a legal result
10 (i.e., |−〉) an error

11 an error

Alice does not reveal her choices between SWAP-10 and SWAP-01, that she keeps

as a secret bit string), and Bob reveals his basis choices. They discard all CTRL

bits Bob measured in the z basis and all SWAP-x bits he measured in the x basis.

3. For each of the SWAP-x and SWAP-ALL states, Alice and Bob reveal the “sums”

of their measurement results.

4. Alice and Bob interpret their measurement results: they consider several types of

measurement results as errors, losses, or valid results. See Tables 3.2–3.4 for the

details.

5. For all SWAP-x (x ∈ {01, 10}) rounds, if Bob’s “sum” is 1 and Alice’s “sum”

is 0, then Alice and Bob share a (secret) bit b, because Alice knows (in secret)

what operation S1−b she performed, and Bob knows (in secret) what mode |b〉 he

detected. Each one of Alice and Bob keeps this sequence of bits b as his or her

secret bit string.

6. Alice and Bob reveal some random subsets of their bit strings, compare them, and

estimate the error rate (this is the error rate on the way from Alice back to Bob).

They abort the protocol if the error rate in these bits, or any of the error rates

measured in Step 4, is above a specified threshold. They discard the revealed bits.

7. Alice and Bob perform error correction and privacy amplification processes on the

remaining bit string, yielding a final key that is identical for Alice and Bob and is

fully secure from any eavesdropper.
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Table 3.3: Interpretations of Alice’s and Bob’s measurement results for SWAP-x states.

Alice’s “Sum” Bob’s “Sum” Interpretation

0 0 a loss
0 1 Alice and Bob share a bit
1 0 Alice and Bob do not share a bit
1 1 an error

0 or 1 2 an error
2 impossible

Table 3.4: Interpretations of Alice’s and Bob’s measurement results for SWAP-ALL
states.

Alice’s Result Bob’s Result Interpretation

00 00 a loss
01 or 10 00 a legal result

11 00 an error
any 01, 10, or 11 an error

Notice that Bob does not have a special role in the beginning: he always generates

the same state, |+〉. It is even possible that the adversary Eve generates this state

instead of him.

3.3 Robustness Analysis

To prove robustness, we will prove that for Eve’s attack to be undetectable by Alice

and Bob (namely, for Eve’s attack not to cause any errors), it must not give Eve any

information.

Eve’s attack on a state can be performed in both directions: from the source (Bob)

to Alice, Eve applies U ; from Alice back to Bob, Eve applies V . We may assume,

without limiting generality, that Eve uses a fixed probe space HE for her attacks.

According to the definition of robustness, we will prove that if, during a run of the

protocol, no error can be detected by Alice and Bob, then Eve gets no information on

the raw key. According to Tables 3.2–3.4, if Alice and Bob cannot find any error, the

following conditions must be true for all measurement results that were not discarded

due to basis mismatch:

1. For all CTRL rounds, Bob’s measurement result (in the x basis) must not be 10

or 11: namely, Bob must never detect any photon in the |−〉 mode.

2. For all SWAP-x rounds, Alice’s “sum” and Bob’s “sum” (in the z basis) must not

be both 1.

3. For all SWAP-x rounds, Bob’s “sum” (in the z basis) must not be 2: namely,

Bob’s measurement result must not be 11.
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4. For all SWAP-x rounds, no error (that may be detected during the protocol) can

exist. In other words:

(a) For all SWAP-10 rounds, Bob’s measurement result (in the z basis) must not

be 10.

(b) For all SWAP-01 rounds, Bob’s measurement result (in the z basis) must not

be 01.

5. For all SWAP-ALL rounds, Alice’s measurement result must not be 11.

6. For all SWAP-ALL rounds, Bob’s measurement result must not be 01, 10, or 11.

We now analyze each round of the protocol. After the round begins, the source

(Bob) sends to Alice the state |0, 1〉x,B ∈ HB. Eve can now interfere: she attaches her

own probe state (in the Hilbert space HE) and applies the unitary transformation U .

The resulting Bob+Eve state (including Eve’s probe) is of the form

|ψinit〉 ,
∑
m1≥0
m0≥0

|m1,m0〉B|Em1,m0〉E, (3.6)

where |Ei,j〉E are non-normalized vectors in HE.

Condition 5 means that |Em1,m0〉E = 0 for all m1,m0 satisfying m1 ≥ 1 and m0 ≥ 1.

Therefore,

|ψinit〉 = |φ1,0〉+ |φ0,1〉+ |φ0,0〉, (3.7)

where

|φ1,0〉 ,
∑
m1≥1

|m1, 0〉B|Em1,0〉E, (3.8)

|φ0,1〉 ,
∑
m0≥1

|0,m0〉B|E0,m0〉E, (3.9)

|φ0,0〉 , |0, 0〉B|E0,0〉E. (3.10)

Alice now applies one of the four possible operations (CTRL = I, SWAP-10 = S1,

SWAP-01 = S0, or SWAP-ALL = S) and destructively measures her probe state. The

(non-normalized) state of the Bob+Eve system after Alice’s operation and measurement

is written in Table 3.5.

Then, Eve applies a second unitary transformation V on the state sent from Alice

to Bob (and on her own probe state). According to conditions 2, 3, and 6, the density

matrices V ρ
(1)
S-10V

†, V ρ
(1)
S-01V

†, and V ρS-ALLV
† must only overlap with |0, 0〉B. It follows

that there exists |H0,0〉E ∈ HE such that

V |φ0,0〉 = |0, 0〉B|H0,0〉E. (3.11)

Let us denote V |φ1,0〉 =
∑

m1≥0
m0≥0

|m1,m0〉B|Fm1,m0〉E. Let us look at a SWAP-01

33



Table 3.5: The (non-normalized) state of the Bob+Eve system after Alice’s operation,
given Alice’s “sum”. Note that |φ1,0〉, |φ0,1〉, and |φ0,0〉 are defined in

Equations (3.8)–(3.10).

Alice’s Operation Alice’s “Sum” Bob+Eve State

CTRL |ψCTRL〉 , |φ1,0〉+ |φ0,1〉+ |φ0,0〉
SWAP-10 0 |ψ(0)

S-10〉 , |φ0,1〉+ |φ0,0〉
SWAP-01 0 |ψ(0)

S-01〉 , |φ1,0〉+ |φ0,0〉
SWAP-10 1 ρ

(1)
S-10 ,

∑
m1≥1

|0, 0〉B〈0, 0|B ⊗ |Em1,0〉E〈Em1,0|E

SWAP-01 1 ρ
(1)
S-01 ,

∑
m0≥1

|0, 0〉B〈0, 0|B ⊗ |E0,m0〉E〈E0,m0 |E

SWAP-ALL ρS-ALL , ρ
(1)
S-10 + ρ

(1)
S-01 + |φ0,0〉〈φ0,0|

round for which Alice’s “sum” is 0: in this round, the state of Bob+Eve after Eve’s

attack is

V |ψ(0)
S-01〉 = V |φ1,0〉+ V |φ0,0〉

=
∑
m1≥0
m0≥0

|m1,m0〉B|Fm1,m0〉E + |0, 0〉B|H0,0〉E, (3.12)

and following conditions 4b and 3, Bob must not detect a photon in the |0〉 mode

(otherwise, the error may be detected during the protocol). Therefore, |Fm1,m0〉E = 0

for all m0 ≥ 1. It follows that

V |φ1,0〉 =
∑
m1≥1

|m1, 0〉B|Fm1,0〉E + |0, 0〉B|F0,0〉E. (3.13)

Similarly (following conditions 4a and 3),

V |φ0,1〉 =
∑
m0≥1

|0,m0〉B|G0,m0〉E + |0, 0〉B|G0,0〉E. (3.14)

Now, Equations (3.11), (3.13), and (3.14) imply that if Alice applies CTRL, the

state of Bob+Eve after Eve’s attack is

V |ψCTRL〉 = V |φ1,0〉+ V |φ0,1〉+ V |φ0,0〉

=
∑
m≥1

[|m, 0〉B|Fm,0〉E + |0,m〉B|G0,m〉E] + |0, 0〉B|H〉E, (3.15)

where |H〉E , |F0,0〉E + |G0,0〉E + |H0,0〉E. Following condition 1, the probability of Bob

detecting a photon in the |−〉 mode must be 0.

We now use the following Lemma:

Lemma 3.1. If |ψ′〉 =
∑

m≥1 [|m, 0〉B|Fm,0〉E + |0,m〉B|G0,m〉E] + |0, 0〉B|H〉E is a bi-
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partite state in HB ⊗HE, and if there is zero probability that Bob detects a photon in

the |−〉 mode, then |F1,0〉E = |G0,1〉E, and |Fm,0〉E = |G0,m〉E = 0 for all m ≥ 2.

Proof. If there is zero probability that Bob detects a photon in the |−〉 mode, then

there is zero probability of measuring any basis state |m−,m+〉x,B of HB which satisfies

m− ≥ 1.

For m = 1, since |0, 1〉B =
|0,1〉x,B+|1,0〉x,B√

2
and |1, 0〉B =

|0,1〉x,B−|1,0〉x,B√
2

, we get the

following equation:

|1, 0〉B|F1,0〉E + |0, 1〉B|G0,1〉E =
|0, 1〉x,B√

2
[|G0,1〉E + |F1,0〉E]

+
|1, 0〉x,B√

2
[|G0,1〉E − |F1,0〉E] . (3.16)

Since the probability of detecting a photon in the |−〉 mode must be 0 (and, in particular,

the probability of detecting |1, 0〉x,B must be 0), it is necessary that |F1,0〉E = |G0,1〉E.

For m ≥ 2, using the ladder operators a0, a1, a+, and a−, since a0 = a++a−√
2

and

a1 = a+−a−√
2

, we get

|0,m〉B =
a†0
m
|0, 0〉B√
m!

=

(
a†+ + a†−√

2

)m
|0, 0〉B√
m!

=
1√

2m ·m!

m∑
k=0

(
m

k

)
a†−

k
a†+

m−k
|0, 0〉B (3.17)

and

|m, 0〉B =
a†1
m
|0, 0〉B√
m!

=

(
a†+ − a

†
−√

2

)m
|0, 0〉B√
m!

=
1√

2m ·m!

m∑
k=0

(
m

k

)
(−1)ka†−

k
a†+

m−k
|0, 0〉B. (3.18)

From Equations (3.17)–(3.18) it follows that

|m, 0〉B|Fm,0〉E + |0,m〉B|G0,m〉E = |e(m)〉B [|G0,m〉E + |Fm,0〉E]

+ |o(m)〉B [|G0,m〉E − |Fm,0〉E] , (3.19)

where

|e(m)〉B ,
1√

2m ·m!

∑
k even

(
m

k

)
a†−

k
a†+

m−k
|0, 0〉B, (3.20)

|o(m)〉B ,
1√

2m ·m!

∑
k odd

(
m

k

)
a†−

k
a†+

m−k
|0, 0〉B. (3.21)

We notice that a†−
k
a†+

m−k
|0, 0〉B is, up to a constant factor, the Fock state |k,m− k〉x,B.
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Because the probability of finding a photon in the |−〉 mode must be zero, it means

that the coefficient of a†−
k
a†+

m−k
|0, 0〉B must be zero for all k ≥ 1.

Substituting |e(m)〉B and |o(m)〉B by their values in Equation (3.19), the coefficient of

a†−
k
a†+

m−k
|0, 0〉B (up to a non-zero constant factor) is |G0,m〉E + |Fm,0〉E for even values

of k and |G0,m〉E − |Fm,0〉E for odd values of k. Since k = m ≥ 1 and k = m − 1 ≥ 1

have different parities, this implies both |G0,m〉E + |Fm,0〉E and |G0,m〉E − |Fm,0〉E must

be 0, and thus |Fm,0〉E = |G0,m〉E = 0.

Applying Lemma 3.1, we deduce that |Fm,0〉E = |G0,m〉E = 0 for all m ≥ 2, and that

|F1,0〉E = |G0,1〉E , |F 〉E.

It follows that the joint states of Bob+Eve after Eve’s attack, when Alice performed

SWAP-x and her “sum” was 0 (these are the only rounds in which Alice and Bob may

share a secret bit), are: (using Table 3.5 and Equations (3.11), (3.13), and (3.14))

V |ψ(0)
S-10〉 = V |φ0,1〉+ V |φ0,0〉 = |0, 1〉B|F 〉E + |0, 0〉B [|G0,0〉E + |H0,0〉E] , (3.22)

V |ψ(0)
S-01〉 = V |φ1,0〉+ V |φ0,0〉 = |1, 0〉B|F 〉E + |0, 0〉B [|F0,0〉E + |H0,0〉E] .(3.23)

Therefore, the state of Eve’s probe is independent of all Alice’s and Bob’s shared

bits, and is equal to |F 〉E whenever Alice and Bob share a bit. Eve can thus get no

information on the bits shared by Alice and Bob without causing errors that may be

noticed by Alice and Bob.

3.4 Conclusion

In this chapter, we have suggested a solution for a practical security problem of SQKD

protocols, that was discussed in Section 3.1 and [TLC09]: we have presented a new

semiquantum key distribution protocol and proved it robust (see Chapter 5 for full

security analysis against “uniform collective” attacks). Unlike all previous SQKD

protocols, our new protocol can be experimentally implemented in a secure way.
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Chapter 4

Attacks Against a Simplified

Variant of the Mirror Protocol

In this chapter, we present a simpler variant of the Mirror protocol (the “simplified

Mirror protocol”) which is easier to implement. Our variant allows the classical party,

Alice, to choose one of three operations, while the Mirror protocol allows her to choose

one of four operations. We then present two attacks against this variant, proving it

non-robust. Our results show the four classical operations allowed by the Mirror protocol

are probably necessary for robustness.

This chapter is based on a paper published in Entropy in 2018 by Michel Boyer,

Rotem Liss, and Tal Mor [BLM18].

4.1 The Simplified Mirror Protocol

The simplified Mirror protocol we present in this chapter is identical to the Mirror

protocol described in Section 3.2, except that it does not include the SWAP-ALL

operation. In other words, in the simplified protocol, Alice chooses at random one of

the three classical operations CTRL, SWAP-10, and SWAP-01.

The simplified protocol is easier to implement, because the SWAP-ALL operation

poses some experimental challenges to the electronic implementation discussed in

Section 3.2: for implementing SWAP-ALL, the Pockels cell should either remain working

for a long time (changing polarization for both pulses) or be operated twice (changing

polarization for each pulse separately). In more details, for the two pulses representing

the |0〉 mode and the |1〉 mode: if we assume the duration of each pulse is t and the time

difference between the two pulses is T (where t� T ), the first solution means keeping

the Pockels cell operating during the time period [0, T + 2t], and the second solution

means operating the Pockels cell during the two time periods [0, t] and [T + t, T + 2t].

The first solution may be problematic for some models of the Pockels cell, and the

second solution may be problematic because of the recovery time needed for the Pockels

cell. Therefore, at least in some implementations, the simplified Mirror protocol is much
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easier to implement than the standard Mirror protocol.

Moreover, analyzing the simplified protocol gives a better understanding of the

properties required for an SQKD protocol to be robust. In particular, this analysis

explains why the structure and complexity of the Mirror protocol are necessary for

robustness.

For completeness, we provide below the full description of the simplified Mirror

protocol. We emphasize, however, that this protocol is almost identical to the Mirror

protocol described in Section 3.2, and the only difference is removing the SWAP-ALL

operation.

In the simplified Mirror protocol, in each round, Bob sends to Alice the initial state

|+〉B, which is equivalent to |0, 1〉x,B , |0,1〉B+|1,0〉B√
2

. Then, Alice prepares an ancillary

state in the initial vacuum state |0, 0〉Aanc and chooses at random one of the following

three classical operations (defined on any Fock state she may possibly get, due to Eve’s

attack):

I (CTRL) Reflect all photons towards Bob, without measuring any photon. The

mathematical description is:

I|0, 0〉Aanc |m1,m0〉B = |0, 0〉Aanc |m1,m0〉B. (4.1)

S1 (SWAP-10) Reflect all photons in the |0〉 mode towards Bob, and measure all

photons in the |1〉 mode. The mathematical description is:

S1|0, 0〉Aanc |m1,m0〉B = |m1, 0〉Aanc |0,m0〉B. (4.2)

S0 (SWAP-01) Reflect all photons in the |1〉 mode towards Bob, and measure all

photons in the |0〉 mode. The mathematical description is:

S0|0, 0〉Aanc |m1,m0〉B = |0,m0〉Aanc |m1, 0〉B. (4.3)

We note that in the above mathematical description, Alice measures her ancillary

state |·〉Aanc in the z basis and sends back to Bob the |·〉B state. The states sent from

Alice to Bob (without any error, loss, or eavesdropping) are detailed in Table 4.1. Then,

Bob measures the incoming state in a random basis (either the z basis or the x basis).

After completing all rounds, Alice sends over the classical channel her operation

choices (CTRL or SWAP-x; she keeps x ∈ {01, 10} in secret), Bob sends over the

classical channel his basis choices, and both of them reveal some non-secret information

on their measurement results (as elaborated in Section 3.2). Then, Alice and Bob reveal

and compute the error rate on test bits for which Alice used SWAP-10 or SWAP-01

and Bob measured in the z basis, and the error rate on test bits for which Alice used

CTRL and Bob measured in the x basis. They also check whether other errors exist

(for example, it must never happen that both Alice and Bob detect a photon). Alice
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Table 4.1: The state sent from Alice to Bob in the simplified Mirror protocol without
errors or losses, depending on Alice’s classical operation and on whether Alice detected

a photon or not.

Alice’s Operation Did Alice Detect a Photon? State Sent from Alice to Bob

CTRL no (happens with certainty) |0, 1〉x,B = 1√
2

[|0, 1〉B + |1, 0〉B]

SWAP-10 no (happens with probability 1
2) |0, 1〉B

SWAP-10 yes (happens with probability 1
2) |0, 0〉B

SWAP-01 no (happens with probability 1
2) |1, 0〉B

SWAP-01 yes (happens with probability 1
2) |0, 0〉B

and Bob also discard mismatched rounds, such as rounds in which Alice used SWAP-10

and Bob used the x basis.

In the non-testing rounds, Alice and Bob share the secret bit 0 if Alice uses SWAP-10

and detects no photon while Bob measures in the z basis and detects a photon in the

|0〉 mode; similarly, they share the secret bit 1 if Alice uses SWAP-01 and detects no

photon while Bob measures in the z basis and detects a photon in the |1〉 mode.

Finally, Alice and Bob verify that the error rates are below some thresholds, and

they perform error correction and privacy amplification in the standard way for QKD

protocols. At the end of the protocol, Alice and Bob hold an identical final key that is

supposed to be completely secure against any eavesdropper.

4.2 Attacks Against the Simplified Mirror Protocol

We prove the simplified protocol to be non-robust by presenting two attacks: a “full

attack” described in Subsection 4.2.1, which gives Eve full information but causes full

loss of the CTRL bits, and a “weaker attack” described in Subsection 4.2.2, which gives

Eve less information but causes fewer losses of CTRL bits.

4.2.1 A Full Attack on the Simplified Protocol

In this attack, Eve gets full information of all secret bits: namely, she gets full information

on the SWAP-10 and SWAP-01 bits that were measured by Bob in the z basis.

Eve applies her attack in two stages: the first stage is on the way from Bob to Alice,

and the second stage is on the way from Alice to Bob. In both stages she uses her

own probe space (namely, ancillary space) HE = H3 spanned by the orthonormal basis

{|0〉E, |1〉E, |2〉E}. We assume that Eve fully controls the environment, the errors, and

the losses (this is a standard assumption when analyzing the security of QKD): namely,

no losses and no errors exist between Bob and Eve or between Alice and Eve.

In the first stage of the attack (on the way from Bob to Alice), Eve intercepts the
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Table 4.2: The state of Bob+Eve after Alice’s classical operation for the attacks
described in Subsections 4.2.1 and 4.2.2, depending on Alice’s classical operation and

on whether Alice detected a photon or not.

Alice’s Operation Did Alice Detect a Photon? Bob+Eve State

CTRL no (happens with certainty) 1√
3

[|0, 1〉B|1〉E + |1, 0〉B|1〉E
+|0, 0〉B|0〉E]

SWAP-10 no (happens with probability 2
3) 1√

2
[|0, 1〉B|1〉E + |0, 0〉B|0〉E]

SWAP-10 yes (happens with probability 1
3) |0, 0〉B|1〉E

SWAP-01 no (happens with probability 2
3) 1√

2
[|1, 0〉B|1〉E + |0, 0〉B|0〉E]

SWAP-01 yes (happens with probability 1
3) |0, 0〉B|1〉E

state |+〉B = |0, 1〉x,B sent by Bob, generates instead the state

1√
3

[|0, 1〉B|1〉E + |1, 0〉B|1〉E + |0, 0〉B|0〉E] =

√
2

3
|0, 1〉x,B|1〉E +

√
1

3
|0, 0〉B|0〉E, (4.4)

and sends to Alice the B part of the state. This state causes Alice to get no photons with

probability 1
3 and get the expected |+〉B state with probability 2

3 . Alice then performs

at random one of the three classical operations CTRL, SWAP-10, or SWAP-01; the

resulting possible states of Bob+Eve are described in Table 4.2.

In the second stage of the attack (on the way from Alice to Bob), Eve applies the

unitary operator V on the joint Bob+Eve state, where V is defined as follows:

V |0, 1〉B|1〉E = −
√

1

3
|1, 0〉B|1〉E +

√
2

3
|0, 0〉B|0〉E, (4.5)

V |1, 0〉B|1〉E = −
√

1

3
|0, 1〉B|0〉E +

√
2

3
|0, 0〉B|1〉E, (4.6)

V |0, 0〉B|0〉E =

√
1

3
|0, 1〉B|0〉E +

√
1

3
|1, 0〉B|1〉E +

√
1

3
|0, 0〉B|+〉E, (4.7)

V |0, 0〉B|1〉E = |0, 0〉B|2〉E. (4.8)

V is indeed a unitary operator, because we can prove the right-hand sides to be

orthonormal: all right-hand sides are normalized vectors; the first two vectors are clearly

orthogonal; the third vector is orthogonal to the first two, because 〈0|+〉E = 〈1|+〉E = 1√
2
;

and the fourth vector is orthogonal to the three others. Thus, V defines (or, more

precisely, can be extended to) a unitary operator on HB ⊗HE.

Applying the unitary operator V to Table 4.2 gives the states listed in Table 4.3.

Comparing it with Table 4.1, we conclude that this attack never causes Alice and Bob

to detect an error. Moreover, Eve detects the entire secret key: Eve measures “0” in

her probe if Alice and Bob agree on the “secret” bit 0, and she measures “1” in her

probe if Alice and Bob agree on the “secret” bit 1. However, Eve causes several kinds

of losses; in particular, all CTRL bits are lost.
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Table 4.3: The state of Bob+Eve after completing Eve’s attack described in
Subsection 4.2.1, depending on Alice’s classical operation and on whether Alice

detected a photon or not.

Alice’s Operation Did Alice Detect a Photon? Bob+Eve State

CTRL no (happens with certainty) |0, 0〉B|+〉E
SWAP-10 no (happens with probability 2

3)
1√
6
|0, 1〉B|0〉E + |0, 0〉B

3|0〉E + |1〉E√
12

SWAP-10 yes (happens with probability 1
3) |0, 0〉B|2〉E

SWAP-01 no (happens with probability 2
3)

1√
6
|1, 0〉B|1〉E + |0, 0〉B

|0〉E + 3|1〉E√
12

SWAP-01 yes (happens with probability 1
3) |0, 0〉B|2〉E

Therefore, this attack makes it possible for Eve to get full information without

inducing any error. However, Eve causes many losses, including full loss of the CTRL

bits.

4.2.2 A Weaker Attack on the Simplified Protocol

The full attack described in Subsection 4.2.1 makes it impossible for Bob to ever detect

a CTRL bit, which may look suspicious. We now present a weaker attack that lets Bob

detect some CTRL bits but gives Eve less information.

The first stage of the attack (on the way from Bob to Alice) remains the same:

that is, the state Eve sends to Alice is still given by Equation (4.4), and the resulting

Bob+Eve state after Alice’s classical operation is still shown in Table 4.2. Eve’s probe

space is, too, the same as before: HE = H3 , Span{|0〉E, |1〉E, |2〉E}.
This attack is characterized by the parameter 0 ≤ ε ≤ 1. We will see that ε = 0

gives the full attack described in Subsection 4.2.1, while ε = 1 gives Eve no information

at all.

Another important parameter used by the attack is

κ ,

√
1− ε2
3− 2ε2

. (4.9)

We notice that for small values of ε, the value of κ is close to
√

1
3 . Moreover, for all

0 ≤ ε ≤ 1, it holds that 0 < ε2 + κ2 ≤ 1 and 2κ2 < 1.

In the second stage of the attack (on the way from Alice to Bob), Eve applies the

unitary operator V on the joint Bob+Eve state, where V is defined as follows:

V |0, 1〉B|1〉E = ε|0, 1〉B|2〉E − κ|1, 0〉B|1〉E +
√

1− κ2 − ε2|0, 0〉B|0〉E, (4.10)

V |1, 0〉B|1〉E = −κ|0, 1〉B|0〉E + ε|1, 0〉B|2〉E +
√

1− κ2 − ε2|0, 0〉B|1〉E, (4.11)

V |0, 0〉B|0〉E = κ|0, 1〉B|0〉E + κ|1, 0〉B|1〉E +
√

1− 2κ2|0, 0〉B|+〉E, (4.12)

V |0, 0〉B|1〉E = |0, 0〉B|2〉E. (4.13)
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Table 4.4: The state of Bob+Eve after completing Eve’s attack described in
Subsection 4.2.2, depending on Alice’s classical operation and on whether Alice detected

a photon or not. The parameters a and b are defined in Equations (4.16)–(4.17).

Alice’s Operation Did Alice Detect a Photon? Bob+Eve State

CTRL no (happens with certainty)

√
2ε2

3
|0, 1〉x,B|2〉E

+

√
1− 2ε2

3
|0, 0〉B|+〉E

SWAP-10 no (happens with probability 2
3)

1√
2

[|0, 1〉B (ε|2〉E + κ|0〉E)

+|0, 0〉B (a|0〉E + b|1〉E)]

SWAP-10 yes (happens with probability 1
3) |0, 0〉B|2〉E

SWAP-01 no (happens with probability 2
3)

1√
2

[|1, 0〉B (ε|2〉E + κ|1〉E)

+|0, 0〉B (b|0〉E + a|1〉E)]

SWAP-01 yes (happens with probability 1
3) |0, 0〉B|2〉E

V is indeed a unitary operator, because we can prove the right-hand sides to be

orthonormal: all right-hand sides are clearly normalized; the first two vectors are

orthogonal; the fourth vector is orthogonal to the three others; and the third vector is

orthogonal to the first and to the second, because

1− 2κ2 =
3− 2ε2 − 2(1− ε2)

3− 2ε2
=

1

3− 2ε2
, (4.14)

1− κ2 − ε2 =
(3− 2ε2)− (1− ε2)− (3ε2 − 2ε4)

3− 2ε2
=

2(1− ε2)2

3− 2ε2
, (4.15)

and thus
√
1−κ2−ε2

√
1−2κ2√

2
= κ2. Therefore, V extends to a unitary operator on HB⊗HE.

The final global state after Eve’s attack is described in Table 4.4 (computed by

applying the operator V to Table 4.2), given the following definitions:

a ,
√

1− κ2 − ε2 +

√
1− 2κ2√

2
, (4.16)

b ,

√
1− 2κ2√

2
. (4.17)

We notice that for ε = 0, the attack is the same as in Subsection 4.2.1. If ε = 1, the

loss rate of CTRL bits is 1
3 , and Eve gets no information at all on the information bits

(because κ = 0).

In general, if Alice and Bob share a “secret” bit b ∈ {0, 1}, Eve’s probe state is in

the (normalized) state
ε|2〉E + κ|b〉E√

ε2 + κ2
. (4.18)

When Eve measures her probe state in the computational basis {|0〉E, |1〉E, |2〉E},
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Table 4.5: The probability p of Eve obtaining an information bit, and the loss rates
RCTRL and RSWAP-x of CTRL and SWAP-x bits (where x ∈ {01, 10}), respectively, for

several values of the attack’s parameter ε.

ε 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p 1 0.97 0.89 0.78 0.66 0.55 0.44 0.34 0.25 0.15 0
RCTRL 1 0.99 0.97 0.94 0.89 0.83 0.76 0.67 0.57 0.46 0.33

RSWAP-x 0.83 0.83 0.82 0.79 0.76 0.73 0.68 0.63 0.58 0.53 0.5

she gets the information bit b with probability

p =
κ2

ε2 + κ2
=

1− ε2

1 + 2ε2 − 2ε4
, (4.19)

and the loss rates of CTRL and SWAP-x bits (where x ∈ {01, 10}) are

RCTRL = 1− 2ε2

3
, (4.20)

RSWAP-x = 1− ε2 + κ2

2
, (4.21)

respectively.

Table 4.5 shows the probabilities p and the loss rates RCTRL, RSWAP-x for various

values of ε. For example, for ε = 0.5, Eve still gets the information bit with probability

p ≈ 0.55, Bob’s loss rate for the CTRL bits is RCTRL ≈ 0.83, and his loss rate for the

SWAP-x bits is RSWAP-x ≈ 0.73.

For all values of ε, the attack causes no errors. However, in principle, it can be

detected because it causes different loss rates to different types of bits: the loss rate

experienced by Bob in the CTRL bits, RCTRL, is usually different from the loss rate

in the SWAP-x bits, RSWAP-x (see Table 4.5 for details). Therefore, in principle, the

attack can be detected by a statistical test for most values of ε.

The loss rates become equal only for the value ε = ε0 ,
√

3−
√
3

2 ≈ 0.796 (which gives

κ2 = ε2

3 ). It seems that this specific attack cannot be detected, even in principle: it

causes no errors, and it causes the same loss rate for all qubits. For this attack, Eve gets

the information bit with probability p = 1
4 , and the loss rates are RCTRL = RSWAP-x =

1√
3
≈ 0.577. Therefore, this attack gives Eve a reasonable amount of information, and it

is not detectable by looking at errors or comparing loss rates. (We can slightly modify

the attack to make the loss rates identical in both directions of the quantum channel,

too.)

We conclude that this weaker attack gives Eve partial information, causes no errors,

and causes several loss rates. We also conclude that since the loss rates caused by the

attack are usually different for different types of bits, the attack can be detected, in

principle, for any value of ε except ε0. However, for ε = ε0, the attack seems undetectable.
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4.3 Conclusion

We have discussed a simpler and natural variant of the Mirror protocol (the “simplified

Mirror protocol”) which is easier to implement. We have found the simplified Mirror

protocol to be completely non-robust, actually making it an “over-simplified” Mirror

protocol. We have presented in Subsection 4.2.1 an attack giving Eve full information

without causing any error; in addition, since this attack also causes full loss of the

CTRL bits, we have presented in Subsection 4.2.2 weaker attacks giving Eve partial

information, causing no errors, and causing fewer losses. In particular, we have presented

a specific attack (characterized by the parameter ε = ε0 ,
√

3−
√
3

2 ≈ 0.796) that seems

undetectable and gives Eve one quarter (14) of all information bits.

These attacks prove the simplified Mirror protocol, which allows Alice to use

only three classical operations (CTRL, SWAP-10, and SWAP-01), to be completely

non-robust. On the other hand, the Mirror protocol is proved completely robust (see

Section 3.3). As explained in Section 4.1, the only difference between the simplified Mirror

protocol and the Mirror protocol is that the Mirror protocol allows a fourth classical

operation, SWAP-ALL; therefore, allowing the SWAP-ALL operation is necessary for

robustness. More generally, the Mirror protocol probably cannot be made much simpler

while keeping it robust: its complexity is crucial for robustness. Therefore, we have seen

that if we need an SQKD protocol that is experimentally feasible in a secure way, we

may have to use a relatively complicated protocol.

In this chapter, we have not checked the experimental feasibility of Eve’s attacks,

because Eve is usually assumed to be all-powerful. Nonetheless, it can be interesting to

check in the future the experimental feasibility of those attacks and discover whether

the simplified Mirror protocol is flawed also in practice and not “only” in theory. Other

interesting directions for future research include trying to find experimentally feasible

SQKD protocols that are simpler than the Mirror protocol, and trying to find similar

attacks against other QKD and SQKD protocols that have not been proved completely

robust.
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Chapter 5

Security of the Mirror Protocol

Against Uniform Collective

Attacks

In this chapter, we prove security of the Mirror protocol against “uniform collective”

attacks (defined in Subsection 2.3.2) and evaluate the resulting key rate.

This chapter is based on a preprint posted to the arXiv in 2020 by Walter O. Krawec,

Rotem Liss, and Tal Mor [KLM20].

5.1 Introduction

This chapter proves security of the Mirror protocol under a large class of uniform

collective attacks. The class of the “uniform collective attacks” is an important and

powerful subclass of possible attacks (see Subsection 2.3.2 for details); some existing

security proofs of SQKD protocols against general attacks may in fact be limited to

uniform collective attacks, because they use de Finetti’s theorem and similar techniques

(see [Ren08, CKR09]) that can directly be applied only to entanglement-based protocols1.

Therefore, in this chapter we restrict our analysis to uniform collective attacks.

The uniform collective attacks analyzed in this chapter allow Eve to inject multiple

photons into the classical user’s lab, but not into the quantum user’s lab (attacks of the

later kind are left for future analysis, but we briefly discuss them in the beginning of

Section 5.3). In addition, we limit our analysis to two-mode quantum communication,

leaving more complicated attacks for future research. We assume Alice’s and Bob’s

devices precisely implement the needed operations (most notably, Alice’s classical

operations described in Equations (5.1)–(5.4)), and without loss of generality, we

assume an all-powerful Eve controlling all errors and losses in the quantum channel.

1Applying de Finetti’s theorem and similar techniques to prepare-and-measure protocols (including
SQKD protocols) is usually easy for one-way QKD protocols, but it does not necessarily work for
two-way protocols. See Subsection 2.2.2 for details about the different types of QKD protocols.
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We derive an information-theoretic proof of security against these attacks and

simulate the performance of the protocol in a variety of realistic scenarios, including

lossy quantum channels, compared to the BB84 protocol. Ultimately, this chapter shows

that SQKD protocols hold the potential to be secure and feasible in practice, and not

just “secure in ideal conditions”. The methods and techniques we present in this work

may also be applicable to security proofs of other SQKD protocols or even other two-way

QKD protocols where users are limited in some manner in their quantum capabilities.

5.2 The Mirror Protocol: a Concise Description

In this section we present a concise description of the Mirror protocol, which should be

useful for the security proof. A full description of the protocol is available in Section 3.2;

In the Mirror protocol, in each round, Bob sends to Alice the initial state |+〉B, which

is equivalent to |0, 1〉x,B , |0,1〉B+|1,0〉B√
2

. Then, Alice prepares an ancillary state in the

initial vacuum state |0, 0〉Aanc and chooses at random one of the following four classical

operations (defined on any Fock state she may possibly get, due to Eve’s attack):

I (CTRL) Reflect all photons towards Bob, without measuring any photon. The

mathematical description is:

I|0, 0〉Aanc |m1,m0〉B = |0, 0〉Aanc |m1,m0〉B. (5.1)

S1 (SWAP-10) Reflect all photons in the |0〉 mode towards Bob, and measure all

photons in the |1〉 mode. The mathematical description is:

S1|0, 0〉Aanc |m1,m0〉B = |m1, 0〉Aanc |0,m0〉B. (5.2)

S0 (SWAP-01) Reflect all photons in the |1〉 mode towards Bob, and measure all

photons in the |0〉 mode. The mathematical description is:

S0|0, 0〉Aanc |m1,m0〉B = |0,m0〉Aanc |m1, 0〉B. (5.3)

S (SWAP-ALL) Measure all photons, without reflecting any photon towards Bob.

The mathematical description is:

S|0, 0〉Aanc |m1,m0〉B = |m1,m0〉Aanc |0, 0〉B. (5.4)

We note that in the above mathematical description, Alice measures her ancillary

state |·〉Aanc in the z basis and sends back to Bob the |·〉B state.

The states sent from Alice to Bob (without any error, loss, or eavesdropping) and

their interpretations, depending on Alice’s random choice of a classical operation and

on whether Alice detected a photon or not, are detailed in Table 5.1.
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Table 5.1: The state sent from Alice to Bob in the Mirror protocol without errors or
losses, and its interpretation, depending on Alice’s random choice of a classical

operation and on whether Alice detected a photon or not.

Alice’s Op. Did Alice Detect a Photon? State to Bob Round Type Raw Key

CTRL no (happens with certainty) |0, 1〉x,B “test” none

SWAP-10 no (happens with probability 1
2) |0, 1〉B “raw key” 0

SWAP-10 yes (happens with probability 1
2) |0, 0〉B “raw key” none

SWAP-01 no (happens with probability 1
2) |1, 0〉B “raw key” 1

SWAP-01 yes (happens with probability 1
2) |0, 0〉B “raw key” none

SWAP-ALL yes (happens with certainty) |0, 0〉B “SWAP-ALL” none

Then, Bob measures the incoming state in a random basis (either the z basis or

the x basis). We assume here, as is true in most experimental setups, that Alice and

Bob use detectors and not counters: namely, their detectors cannot count the number

of incoming photons. Therefore, when a detector clicks, Alice and Bob cannot know

whether it detected a single-photon pulse (a single photon in its measured mode) or a

multi-photon pulse (more than one photon in its measured mode).

After completing all rounds, Alice and Bob perform classical post-processing : Alice

sends over the classical channel her operation choices (CTRL, SWAP-x, or SWAP-ALL;

she keeps x ∈ {01, 10} in secret); Bob sends over the classical channel his basis choices;

and both of them reveal all rounds where they got a loss, and all measurement results

each of them got in all testing rounds (CTRL, SWAP-ALL, and a random subset of

the SWAP-x rounds, for which Alice also reveals her values of x ∈ {01, 10}) and in all

mismatched rounds (such as rounds in which Alice used SWAP-10 and Bob used the x

basis). In the non-testing rounds, as detailed in Table 5.1, Alice and Bob share the raw

key bit 0 if Alice uses SWAP-10 and detects no photon while Bob measures in the z

basis and detects a photon (or photons) in the |0〉 mode; similarly, they share the raw

key bit 1 if Alice uses SWAP-01 and detects no photon while Bob measures in the z

basis and detects a photon (or photons) in the |1〉 mode.

Now, Alice and Bob have enough information for computing all the probabilities

they need for finding the key rate (that are detailed later, in Table 5.3), so they compute

all these probabilities and deduce the final key rate according to the algorithm in

Subsection 5.3.7. If the final key rate is negative, they abort the protocol; otherwise,

they perform error correction and privacy amplification in the standard way for QKD

protocols. At the end of the protocol, Alice and Bob hold an identical final key that is

completely secure against any eavesdropper.
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5.3 Security Proof of the Mirror Protocol Against Uni-

form Collective Attacks

We now prove security of the Mirror protocol. For our security proof, we assume that

the adversary Eve is restricted to uniform collective attacks—namely, that Eve attacks

each round in an independent and identical manner, but she is allowed to postpone the

measurement of her private quantum ancilla until any future point in time. Beyond this,

we will also assume in our security analysis that Eve is allowed to inject any signal into

the forward channel (linking quantum Bob to classical Alice); in the reverse channel,

she is free to perform any quantum unitary probe, but we will assume that the number

of photons returning to Bob is at most one. That is, Eve is allowed to inject multiple

photons into the channel going to Alice, but on the way back, only a single photon or

no photons at all will be returned to Bob. This assumption means that Eve may need

to remove photons on the way from Alice to Bob, if she sent multiple photons towards

Alice; in Subsection 5.3.1 we explain how Eve can perform this attack.

The above assumption (that at most one photon is sent towards Bob) is made to

simplify the analysis of the return channel. We point out that in Chapter 3 we proved

the Mirror protocol to be completely robust even without this assumption—namely,

proved it robust against all multi-photon attacks and all kinds of losses and dark counts

(see Section 3.3); however, full security analysis of the multi-photon case, including

both losses and dark counts, is very difficult even in the simplest one-way standard

QKD, and even more so in any standard two-way QKD protocol such as “Plug &

Play” [MHHTZG97], “Ping Pong” [BF02], and LM05 [LM05] (see also [BLMR13]).

Furthermore, this case has not been analyzed in security proofs of many other SQKD

protocols (e.g., [Kra15b, Kra16, ZQM18, Kra18]. Therefore, we do not aim to solve this

major issue here in the specific case of the Mirror protocol: extending the full security

proof to this most general case is left for future research.

5.3.1 Eve’s Attacks

Eve’s first attack: We first analyze the forward-channel attack—namely, the attack

on the way from Bob to Alice. Here, we note that it is to Eve’s advantage to simply

discard the signal coming from Bob (which should be the same each round and carries

no information at this point) and inject a signal of her own, possibly consisting of

multiple photons and entangled with her private quantum ancilla.

Specifically, in each round, Bob sends to Alice the same quantum state: |0, 1〉x,B ,
|0,1〉B+|1,0〉B√

2
. At this point, Eve performs her first attack: she replaces Bob’s original

state by her own state. Without loss of generality, Eve’s state is of the form:

|ψ0〉 ,
∑
m1≥0
m0≥0

|m1,m0〉B|em1,m0〉E. (5.5)
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Eve’s second attack: Then, Alice performs her classical operation (CTRL, SWAP-

10, SWAP-01, or SWAP-ALL) and sends the resulting state back to Bob. Now, Eve

performs her second attack, described as the unitary operator UR. As explained above,

for the second attack we make the simplifying assumption that Eve always sends at

most one photon—namely, she sends a superposition of |0, 1〉B, |1, 0〉B, and |0, 0〉B with

her corresponding ancillary states |g0,1m1,m0〉E, |g1,0m1,m0〉E, and |g0,0m1,m0〉E. We emphasize

that this simplifying assumption applies only to the second attack, and not to the first

attack.

Thus, Eve’s second attack is of the form:

UR|m′1,m′0〉B|em1,m0〉E = |0, 1〉B|f0,1m′1,m′0,m1,m0
〉E + |1, 0〉B|f1,0m′1,m′0,m1,m0

〉E

+ |0, 0〉B|f0,0m′1,m′0,m1,m0
〉E. (5.6)

However, in our security proof we use terms of the following simplified notations:

UR|m1,m0〉B|em1,m0〉E = |0, 1〉B|g0,1m1,m0
〉E + |1, 0〉B|g1,0m1,m0

〉E + |0, 0〉B|g0,0m1,m0
〉E. (5.7)

where we denote |gj,km1,m0〉E , |f j,km1,m0,m1,m0〉E. We note that the operation of UR

on states |m′1,m′0〉B|em1,m0〉E where m′1 6= m1 or m′0 6= m0 will not appear in our

security proof, because these states do not give us meaningful statistics2 and thus do

not contribute to the probabilities in Table 5.3. We also note that since Eve is all-

powerful, she will have no trouble performing any unitary operation, even if it includes

a complicated operation for reducing the number of photons.

In both attacks, subsystem B is sent to a legitimate user, while subsystem E is kept

as Eve’s ancilla.

5.3.2 Analyzing all Types of Rounds

In Table 5.2 we classify all rounds into six types, that Alice and Bob need to analyze.

The rounds are classified according to Alice’s random choice of a classical operation and

Bob’s random choice of a measurement basis.

Notice the use of basis-mismatched rounds. Technically, we could have used only

the “standard” (basis-matching) rounds for completing the security proof, by using

the Cauchy-Schwarz inequality for finding worst-case bounds. However, using the

technique of analyzing “mismatched measurements” [BHP93, WMU08], we can derive

a significantly improved formula for the final key rate.

Alice and Bob have to find relevant statistics for each type of round and compute all

2States of the form UR|0,m0〉B|em1,m0〉E and UR|m1, 0〉B|em1,m0〉E may appear in “raw key” rounds
analyzed in Subsection 5.3.3, but we analyze only rounds which contribute to the raw key, where
Alice detects no photon—namely, m1 = 0 or m0 = 0, respectively. In addition, states of the form
UR|0, 0〉B|em1,m0〉E may appear in “SWAP-ALL” rounds analyzed in Subsection 5.3.5, but we analyze
only “double-clicks” of Alice (where Eve’s attack UR is irrelevant, although we use it algebraically to
prove Lemma 5.1) and “creation” events (where Alice detects no photon, so m1 = m0 = 0).

49



Table 5.2: All types of rounds, according to Alice’s random choice of a classical
operation [CTRL, SWAP-x (x ∈ {01, 10}), or SWAP-ALL] and Bob’s random choice of

a measurement basis (z or x).

Round Type Alice’s Operation Bob’s Basis

“raw key” SWAP-x computational (z)
mismatched “raw key” SWAP-x Hadamard (x)

“test” CTRL Hadamard (x)
mismatched “test” CTRL computational (z)

“SWAP-ALL” SWAP-ALL computational (z)
mismatched “SWAP-ALL” SWAP-ALL Hadamard (x)

probabilities listed in Table 5.3. In Subsections 5.3.3–5.3.5 we relate these probabilities

to the quantum states appearing in our security proof, and in Subsection 5.3.6 we derive

the resulting final key rate formula.

Table 5.3: All the probabilities Alice and Bob need to compute, and the formulas
relating them to quantum states in our security proof. All formulas are proved in

Subsections 5.3.3–5.3.5.

Prob. Round Definition Formula

〈E0|E0〉E “raw key” Alice, Bob get raw key bits 0, 0, respectively
〈E1|E1〉E “raw key” Alice, Bob get raw key bits 0, 1, respectively
〈E2|E2〉E “raw key” Alice, Bob get raw key bits 1, 0, respectively
〈E3|E3〉E “raw key” Alice, Bob get raw key bits 1, 1, respectively

M “raw key” both Alice and Bob get raw key bits =
∑3

i=0〈Ei|Ei〉E
p0,+ mismatched Alice gets raw key bit 0; Bob observes |+〉 2<〈E0|E1〉E = 2p0,+

“raw key” − (〈E0|E0〉E + 〈E1|E1〉E)
p1,+ mismatched Alice gets raw key bit 1; Bob observes |+〉 2<〈E2|E3〉E = 2p1,+

“raw key” − (〈E2|E2〉E + 〈E3|E3〉E)

p+,+ “test” Bob observes |+〉 =
∣∣∣∑3

i=0 |Ei〉E

−
∑1

j=0 (|gj〉E − |hj〉E)
∣∣∣2

pCTRL:0 mismatched Bob observes |0, 1〉 = 2 ||E0〉E + |E2〉E
“test” −|g0〉E + |h0〉E|2

pCTRL:1 mismatched Bob observes |1, 0〉 = 2 ||E1〉E + |E3〉E
“test” −|g1〉E + |h1〉E|2

pdouble “SWAP-ALL” Alice observes a “double-click” event (|1, 1〉) 〈h0|h0〉E + 〈h1|h1〉E ≤ 1
2pdouble

pcreate:0 “SWAP-ALL” Alice observes |0, 0〉; Bob observes |0, 1〉 = 2〈g0|g0〉E
pcreate:1 “SWAP-ALL” Alice observes |0, 0〉; Bob observes |1, 0〉 = 2〈g1|g1〉E

In all types of rounds, Bob begins by sending |0, 1〉x,B , |0,1〉B+|1,0〉B√
2

, which Eve

immediately replaces by her own state |ψ0〉 ,
∑

m1≥0
m0≥0

|m1,m0〉B|em1,m0〉E (see Equa-

tion (5.5)). Then, Alice chooses her classical operation, as detailed below.
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5.3.3 “Raw Key” Rounds: Alice Chooses the SWAP-x Operation

In “raw key” rounds, Alice chooses either SWAP-10 or SWAP-01 (each with probability
1
2), that are defined in Equations (5.2)–(5.3). Then, the non-normalized state of the

joint system, conditioning on Alice detecting no photon3, is:

ρ
(after Alice)
ABE =

1

2
|0〉〈0|A⊗P

∑
m0≥0

|0,m0〉B|e0,m0〉E

+
1

2
|1〉〈1|A⊗P

∑
m1≥0

|m1, 0〉B|em1,0〉E

 ,

(5.8)

where we define:

P (|ψ〉) , |ψ〉〈ψ|. (5.9)

We note that |0〉A and |1〉A denote the raw key bit of Alice: Alice deduces it from her

own choice of SWAP-10 (which corresponds to |0〉A) or SWAP-01 (which corresponds

to |1〉A), as explained in Table 5.1.

After Eve’s second attack (namely, after Eve applies the UR operator defined in

Equation (5.7)), the joint non-normalized state becomes:

URρ
(after Alice)
ABE U †R

=
1

2
|0〉〈0|A ⊗ P

|0, 1〉B ∑
m0≥0

|g0,10,m0
〉E + |1, 0〉B

∑
m0≥0

|g1,00,m0
〉E + |0, 0〉B

∑
m0≥0

|g0,00,m0
〉E


+

1

2
|1〉〈1|A ⊗ P

|0, 1〉B ∑
m1≥0

|g0,1m1,0
〉E + |1, 0〉B

∑
m1≥0

|g1,0m1,0
〉E + |0, 0〉B

∑
m1≥0

|g0,0m1,0
〉E

 .

(5.10)

To simplify notation, we define the following states in subsystem E:

|E0〉E ,
1√
2

∑
m0≥0

|g0,10,m0
〉E,

|E1〉E ,
1√
2

∑
m0≥0

|g1,00,m0
〉E,

|E2〉E ,
1√
2

∑
m1≥0

|g0,1m1,0
〉E,

|E3〉E ,
1√
2

∑
m1≥0

|g1,0m1,0
〉E, (5.11)

3Notice that according to Table 5.1, raw key bits are shared by Alice and Bob only in “raw key”
rounds where Alice detects no photon and Bob does detect a photon.
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so Equation (5.10) becomes:

URρ
(after Alice)
ABE U †R

= |0〉〈0|A ⊗ P

|0, 1〉B|E0〉E + |1, 0〉B|E1〉E + |0, 0〉B
1√
2

∑
m0≥0

|g0,00,m0
〉E


+ |1〉〈1|A ⊗ P

|0, 1〉B|E2〉E + |1, 0〉B|E3〉E + |0, 0〉B
1√
2

∑
m1≥0

|g0,0m1,0
〉E

 . (5.12)

(a) Standard “Raw Key” Rounds: Bob Chooses the z Basis

Now, Bob measures his subsystem in the z basis, and his raw key bit is simply his

measurement result (“0” or “1”). Conditioning on Bob detecting a photon (namely,

measuring |0, 1〉B or |1, 0〉B), the final normalized state of the joint system after Bob’s

measurement is:

ρABE =
1

M
(|00〉〈00|AB ⊗ |E0〉〈E0|E + |01〉〈01|AB ⊗ |E1〉〈E1|E

+|10〉〈10|AB ⊗ |E2〉〈E2|E + |11〉〈11|AB ⊗ |E3〉〈E3|E), (5.13)

where M is a normalization term (which will be computed soon).

Equation (5.13) confirms that, as written in Table 5.3:

〈E0|E0〉E = Pr (Alice gets raw key bit 0, and Bob gets raw key bit 0) , (5.14)

〈E1|E1〉E = Pr (Alice gets raw key bit 0, and Bob gets raw key bit 1) , (5.15)

〈E2|E2〉E = Pr (Alice gets raw key bit 1, and Bob gets raw key bit 0) , (5.16)

〈E3|E3〉E = Pr (Alice gets raw key bit 1, and Bob gets raw key bit 1) . (5.17)

In addition, we can compute the normalization term M :

M =
3∑
i=0

〈Ei|Ei〉E = Pr(both Alice and Bob get raw key bits) (5.18)

= Pr (Alice observes no photon, and Bob observes a photon) .

Notice that all these probabilities are observable quantities: Alice and Bob estimate

〈E0|E0〉E, 〈E1|E1〉E, 〈E2|E2〉E, 〈E3|E3〉E, and M during the classical post-processing

stage by testing a random subset of raw key bits.

(b) Mismatched “Raw Key” Rounds: Bob Chooses the x Basis

In this case, Bob measures his subsystem in the x basis. Let us rewrite the state

he measures, provided in Equation (5.12), by substituting |0, 1〉B = |+〉B+|−〉B√
2

and
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|1, 0〉B = |+〉B−|−〉B√
2

. We get:

URρ
(after Alice)
ABE U †R

= |0〉〈0|A ⊗ P

|0, 1〉B|E0〉E + |1, 0〉B|E1〉E + |0, 0〉B
1√
2

∑
m0≥0

|g0,00,m0
〉E


+ |1〉〈1|A ⊗ P

|0, 1〉B|E2〉E + |1, 0〉B|E3〉E + |0, 0〉B
1√
2

∑
m1≥0

|g0,0m1,0
〉E


= |0〉〈0|A ⊗ P

(
|+〉B√

2
(|E0〉E + |E1〉E) + · · ·

)
+ |1〉〈1|A ⊗ P

(
|+〉B√

2
(|E2〉E + |E3〉E) + · · ·

)
, (5.19)

where the remainders of the above terms (the “· · · ”) are irrelevant to our discussion.

We denote by p0,+ the probability that Alice gets the raw key bit 0 and Bob observes

|+〉B (see Table 5.3). Similarly, we denote by p1,+ the probability that Alice gets the

raw key bit 1 and Bob observes |+〉B. These probabilities are:

p0,+ =

∣∣∣∣ |E0〉E + |E1〉E√
2

∣∣∣∣2 =
1

2
(〈E0|E0〉E + 〈E1|E1〉E + 2<〈E0|E1〉E) , (5.20)

p1,+ =

∣∣∣∣ |E2〉E + |E3〉E√
2

∣∣∣∣2 =
1

2
(〈E2|E2〉E + 〈E3|E3〉E + 2<〈E2|E3〉E) . (5.21)

Therefore, we find:

2<〈E0|E1〉E = 2p0,+ − (〈E0|E0〉E + 〈E1|E1〉E) , (5.22)

2<〈E2|E3〉E = 2p1,+ − (〈E2|E2〉E + 〈E3|E3〉E) . (5.23)

5.3.4 “Test” Rounds: Alice Chooses the CTRL Operation

In “test” rounds, Eve sends to Alice her state |ψ0〉 ,
∑

m1≥0
m0≥0

|m1,m0〉B|em1,m0〉E (see

Equation (5.5)), and Alice chooses the CTRL operation—namely, Alice does nothing

(see Equation (5.1)). Then, Eve applies her second attack UR (see Equation (5.7)), and

the resulting quantum state is:

UR|ψ0〉 = |0, 1〉B
∑
m1≥0
m0≥0

|g0,1m1,m0
〉E+|1, 0〉B

∑
m1≥0
m0≥0

|g1,0m1,m0
〉E+|0, 0〉B

∑
m1≥0
m0≥0

|g0,0m1,m0
〉E. (5.24)
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(a) Standard “Test” Rounds: Bob Chooses the x Basis

Changing basis, whereby |0, 1〉B = |+〉B+|−〉B√
2

and |1, 0〉B = |+〉B−|−〉B√
2

, we find:

UR|ψ0〉 =
|+〉B√

2

∑
m1≥0
m0≥0

|g0,1m1,m0
〉E +

∑
m1≥0
m0≥0

|g1,0m1,m0
〉E

+ · · · , (5.25)

where the extra · · · term is irrelevant to our discussion.

Let p+,+ be the probability that Bob observes |+〉B (see Table 5.3). From Equa-

tion (5.25) we deduce:

p+,+ =

∣∣∣∣∣∣∣∣
1√
2

∑
m1≥0
m0≥0

|g0,1m1,m0
〉E +

1√
2

∑
m1≥0
m0≥0

|g1,0m1,m0
〉E

∣∣∣∣∣∣∣∣
2

(5.26)

= |(|E0〉E + |E2〉E − |g0〉E + |h0〉E) + (|E1〉E + |E3〉E − |g1〉E + |h1〉E)|2

= ||E0〉E + |E2〉E − |g0〉E + |h0〉E|2 + ||E1〉E + |E3〉E − |g1〉E + |h1〉E|2

+ 2< [(〈E0|E + 〈E2|E − 〈g0|E + 〈h0|E) · (|E1〉E + |E3〉E − |g1〉E + |h1〉E)] ,

where we define:

|g0〉E ,
1√
2
|g0,10,0〉E,

|g1〉E ,
1√
2
|g1,00,0〉E,

|h0〉E ,
1√
2

∑
m1≥1
m0≥1

|g0,1m1,m0
〉E,

|h1〉E ,
1√
2

∑
m1≥1
m0≥1

|g1,0m1,m0
〉E, (5.27)

and we remember from Equation (5.11) that:

|E0〉E ,
1√
2

∑
m0≥0

|g0,10,m0
〉E,

|E1〉E ,
1√
2

∑
m0≥0

|g1,00,m0
〉E,

|E2〉E ,
1√
2

∑
m1≥0

|g0,1m1,0
〉E,

|E3〉E ,
1√
2

∑
m1≥0

|g1,0m1,0
〉E. (5.28)
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(b) Mismatched “Test” Rounds: Bob Chooses the z Basis

In this case, we denote by pCTRL:0 the probability of Bob observing |0, 1〉B (see Table 5.3).

From Equation (5.24), we find (similarly to the computation of p+,+):

pCTRL:0 =

∣∣∣∣∣∣∣∣
∑
m1≥0
m0≥0

|g0,1m1,m0
〉E

∣∣∣∣∣∣∣∣
2

= 2 ||E0〉E + |E2〉E − |g0〉E + |h0〉E|2 . (5.29)

Similarly, denoting by pCTRL:1 the probability of Bob observing |1, 0〉B, we find:

pCTRL:1 =

∣∣∣∣∣∣∣∣
∑
m1≥0
m0≥0

|g1,0m1,m0
〉E

∣∣∣∣∣∣∣∣
2

= 2 ||E1〉E + |E3〉E − |g1〉E + |h1〉E|2 . (5.30)

5.3.5 “SWAP-ALL” Rounds: Alice Chooses the SWAP-ALL Opera-

tion, and Bob Chooses the z Basis

(a) The Probability of a “Double-Click” Event: Used for Upper-Bounding

〈h0|h0〉E and 〈h1|h1〉E

In “SWAP-ALL” rounds, Eve sends to Alice the initial state |ψ0〉 ,
∑

m1≥0
m0≥0

|m1,m0〉B|em1,m0〉E
described in Equation (5.5), and Alice chooses the SWAP-ALL operation defined in

Equation (5.4), which essentially means that Alice measures subsystem B and sends a

vacuum state towards Bob.

Let us denote by pdouble the probability that Alice observes a “double-click” event

(detecting a photon in both modes |0〉 and |1〉)—namely, that she measures a state

|m1,m0〉Aanc where m1,m0 ≥ 1 (see Table 5.3). This probability is easily found to be:

pdouble =
∑
m1≥1
m0≥1

〈em1,m0 |em1,m0〉E. (5.31)

We can thus prove the following Lemma:

Lemma 5.1. 〈h0|h0〉E ≤ 1
2pdouble and 〈h1|h1〉E ≤ 1

2pdouble, where |h0〉E, |h1〉E were

defined in Equation (5.27).

Proof. Let us define the non-normalized state |ζ〉 as:

|ζ〉 , 1√
2

∑
m1≥1
m0≥1

|m1,m0〉B|em1,m0〉E. (5.32)

(We use the state |ζ〉 only for this algebraic proof; it does not appear in the protocol.)
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Clearly:

〈ζ|ζ〉 =
1

2

∑
m1≥1
m0≥1

〈em1,m0 |em1,m0〉E =
1

2
pdouble. (5.33)

Applying UR (see Equation (5.7)), the state |ζ〉 evolves to:

UR|ζ〉 =
1√
2

∑
m1≥1
m0≥1

(
|0, 1〉B|g0,1m1,m0

〉E + |1, 0〉B|g1,0m1,m0
〉E + |0, 0〉B|g0,0m1,m0

〉E
)

= |0, 1〉B|h0〉E + |1, 0〉B|h1〉E + |0, 0〉B|hvac〉E (5.34)

(where |h0〉E, |h1〉E were defined in Equation (5.27), and |hvac〉E , 1√
2

∑
m1≥1
m0≥1

|g0,0m1,m0〉E).

By unitarity of UR, we have:

1

2
pdouble = 〈ζ|ζ〉 = 〈h0|h0〉E + 〈h1|h1〉E + 〈hvac|hvac〉E, (5.35)

which implies that 〈h0|h0〉E+〈h1|h1〉E ≤ 1
2pdouble. Since both 〈h0|h0〉E and 〈h1|h1〉E are

non-negative, this implies 〈h0|h0〉E ≤ 1
2pdouble and 〈h1|h1〉E ≤ 1

2pdouble, as we wanted.

(b) The Probability of a “Creation” Event: Used for Computing 〈g0|g0〉E
and 〈g1|g1〉E

Let pcreate:0 denote the probability that Alice observes |0, 0〉Aanc (namely, a vacuum

state) and Bob observes |0, 1〉B (see Table 5.3). In this event, Eve “creates” (on the

way from Alice to Bob) a photon in the |0〉 mode that should not have existed. (See

Section 4.2 for examples of such attacks.) Similarly, let pcreate:1 denote the probability

that Alice observes |0, 0〉Aanc and Bob observes |1, 0〉B.

After Eve sends the initial state |ψ0〉 ,
∑

m1≥0
m0≥0

|m1,m0〉B|em1,m0〉E described in

Equation (5.5), and after Alice applies the SWAP-ALL operation defined in Equa-

tion (5.4), the resulting state is:∑
m1≥0
m0≥0

|m1,m0〉Aanc |0, 0〉B|em1,m0〉E. (5.36)

For computing the probabilities pcreate:0 and pcreate:1, we need to analyze the term

where Alice observes |0, 0〉Aanc—namely, the term |0, 0〉Aanc |0, 0〉B|e0,0〉E. Now, Eve’s

second attack applies the unitary operator UR (described in Equation (5.7)) to this

non-normalized term, which gives the following final result:

|0, 0〉Aanc⊗UR|0, 0〉B|e0,0〉E = |0, 0〉Aanc⊗
[
|0, 1〉B|g0,10,0〉E + |1, 0〉B|g1,00,0〉E + |0, 0〉B|g0,00,0〉E

]
.

(5.37)

Since pcreate:0 is the probability that Alice observes |0, 0〉Aanc and Bob observes |0, 1〉B
(and similarly for pcreate:1), we get, according to the definitions of |g0〉E, |g1〉E in
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Equation (5.27):

pcreate:0 = 〈g0,10,0|g
0,1
0,0〉E = 2〈g0|g0〉E, (5.38)

pcreate:1 = 〈g1,00,0|g
1,0
0,0〉E = 2〈g1|g1〉E. (5.39)

5.3.6 Deriving the Final Key Rate

We remember that the final normalized state of the joint system after Bob’s measurement,

in standard “raw key” rounds where raw key bits are generated, is, according to

Equation (5.13):

ρABE =
1

M
(|00〉〈00|AB ⊗ |E0〉〈E0|E + |01〉〈01|AB ⊗ |E1〉〈E1|E

+|10〉〈10|AB ⊗ |E2〉〈E2|E + |11〉〈11|AB ⊗ |E3〉〈E3|E). (5.40)

Theorem 1 from [Kra17] allows us to mathematically compute a bound on the

conditional von Neumann entropy S(A|E) of ρABE, as follows:

S(A|E) ≥ 〈E0|E0〉E + 〈E3|E3〉E
M

·
[
H2

(
〈E0|E0〉E

〈E0|E0〉E + 〈E3|E3〉E

)
−H2(λ1)

]
(5.41)

+
〈E1|E1〉E + 〈E2|E2〉E

M
·
[
H2

(
〈E1|E1〉E

〈E1|E1〉E + 〈E2|E2〉E

)
−H2(λ2)

]
,

where:

λ1 ,
1

2
+

√
(〈E0|E0〉E − 〈E3|E3〉E)2 + 4<2〈E0|E3〉E

2 (〈E0|E0〉E + 〈E3|E3〉E)
, (5.42)

λ2 ,
1

2
+

√
(〈E1|E1〉E − 〈E2|E2〉E)2 + 4<2〈E1|E2〉E

2 (〈E1|E1〉E + 〈E2|E2〉E)
, (5.43)

H2(x) , −x log2(x)− (1− x) log2(1− x). (5.44)

Thus, to complete our proof of security, we only need bounds on the quantities

<〈E0|E3〉E and <〈E1|E2〉E; all the other parameters in the above expressions (〈E0|E0〉E,

〈E1|E1〉E, 〈E2|E2〉E, 〈E3|E3〉E, and M) are observable probabilities that appear in

Table 5.3 and can be directly computed by Alice and Bob.

We thus expand Equation (5.26) and substitute Equations (5.22)–(5.23) and (5.29)–

(5.30) (all appearing in Table 5.3):

p+,+ = ||E0〉E + |E2〉E − |g0〉E + |h0〉E|2 + ||E1〉E + |E3〉E − |g1〉E + |h1〉E|2

+ 2< [(〈E0|E + 〈E2|E − 〈g0|E + 〈h0|E) · (|E1〉E + |E3〉E − |g1〉E + |h1〉E)]

=
1

2
(pCTRL:0 + pCTRL:1)

+ 2< (〈E0|E + 〈E2|E) (|E1〉E + |E3〉E)− 2< (〈E0|E + 〈E2|E) (|g1〉E − |h1〉E)

− 2< (〈g0|E − 〈h0|E) (|E1〉E + |E3〉E) + 2< (〈g0|E − 〈h0|E) (|g1〉E − |h1〉E)
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=
1

2
(pCTRL:0 + pCTRL:1)

+ 2p0,+ − (〈E0|E0〉E + 〈E1|E1〉E) + 2<〈E0|E3〉E
+ 2p1,+ − (〈E2|E2〉E + 〈E3|E3〉E) + 2<〈E1|E2〉E
− 2< (〈E0|E + 〈E2|E) (|g1〉E − |h1〉E)− 2< (〈g0|E − 〈h0|E) (|E1〉E + |E3〉E)

+ 2< (〈g0|E − 〈h0|E) (|g1〉E − |h1〉E) . (5.45)

The resulting equation is: (substituting Equation (5.18), which appears in Table 5.3)

< (〈E0|E3〉E + 〈E1|E2〉E) =
1

2
p+,+ − p0,+ − p1,+ −

1

4
(pCTRL:0 + pCTRL:1) +

1

2
M

+ < (〈g1|E − 〈h1|E) (|E0〉E + |E2〉E)

+ < (〈g0|E − 〈h0|E) (|E1〉E + |E3〉E)

− < (〈g0|E − 〈h0|E) (|g1〉E − |h1〉E) . (5.46)

By the Cauchy-Schwarz inequality, Lemma 5.1, and Equations (5.38)–(5.39) (all appear-

ing in Table 5.3), we determine the following bound:

< (〈E0|E3〉E + 〈E1|E2〉E) ≥ 1

2
p+,+ − p0,+ − p1,+ −

1

4
(pCTRL:0 + pCTRL:1) +

1

2
M

− 1√
2

(
√
pcreate:1 +

√
pdouble)

(√
〈E0|E0〉E +

√
〈E2|E2〉E

)
− 1√

2
(
√
pcreate:0 +

√
pdouble)

(√
〈E1|E1〉E +

√
〈E3|E3〉E

)
− 1

2
(
√
pcreate:0 +

√
pdouble) (

√
pcreate:1 +

√
pdouble) .(5.47)

To compute S(A|E), we will simply minimize Equation (5.41) with respect to the

condition outlined above and the following conditions (resulting from the Cauchy-

Schwarz inequality):

|<〈E0|E3〉E| ≤
√
〈E0|E0〉E · 〈E3|E3〉E, (5.48)

|<〈E1|E2〉E| ≤
√
〈E1|E1〉E · 〈E2|E2〉E. (5.49)

In addition, we need to compute the expression H(A|B):

H(A|B) = H(AB)−H(B), (5.50)

where:

H(AB) = H

(
〈E0|E0〉E

M
,
〈E1|E1〉E

M
,
〈E2|E2〉E

M
,
〈E3|E3〉E

M

)
, (5.51)

H(B) = H

(
〈E0|E0〉E + 〈E2|E2〉E

M
,
〈E1|E1〉E + 〈E3|E3〉E

M

)
. (5.52)
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The final key rate expression is given by the Devetak-Winter key rate formula [DW05]:

r = S(A|E)−H(A|B), (5.53)

using S(A|E) and H(A|B) computed above.

5.3.7 Algorithm for Computing the Key Rate

The following algorithm allows us to compute the key rate for any noise model and

experimental data:

1. Estimate all probabilities and inner products listed in Table 5.3. (All these

probabilities can be computed by Alice and Bob in the classical post-processing

stage.)

2. Compute the minimal value of the lower bound for S(A|E) presented in Equa-

tion (5.41), which is copied here:

S(A|E) ≥ 〈E0|E0〉E + 〈E3|E3〉E
M

·
[
H2

(
〈E0|E0〉E

〈E0|E0〉E + 〈E3|E3〉E

)
−H2(λ1)

]
+
〈E1|E1〉E + 〈E2|E2〉E

M
·
[
H2

(
〈E1|E1〉E

〈E1|E1〉E + 〈E2|E2〉E

)
−H2(λ2)

]
,

(5.54)

where

λ1 ,
1

2
+

√
(〈E0|E0〉E − 〈E3|E3〉E)2 + 4<2〈E0|E3〉E

2 (〈E0|E0〉E + 〈E3|E3〉E)
, (5.55)

λ2 ,
1

2
+

√
(〈E1|E1〉E − 〈E2|E2〉E)2 + 4<2〈E1|E2〉E

2 (〈E1|E1〉E + 〈E2|E2〉E)
, (5.56)

H2(x) , −x log2(x)− (1− x) log2(1− x), (5.57)

where the minimum is taken over <〈E0|E3〉E and <〈E1|E2〉E, subject to the three

following constraints:

< (〈E0|E3〉E + 〈E1|E2〉E) ≥ 1

2
p+,+ − p0,+ − p1,+ −

1

4
(pCTRL:0 + pCTRL:1) +

1

2
M

− 1√
2

(
√
pcreate:1 +

√
pdouble)

(√
〈E0|E0〉E +

√
〈E2|E2〉E

)
− 1√

2
(
√
pcreate:0 +

√
pdouble)

(√
〈E1|E1〉E +

√
〈E3|E3〉E

)
− 1

2
(
√
pcreate:0 +

√
pdouble) (

√
pcreate:1 +

√
pdouble) , (5.58)

|<〈E0|E3〉E| ≤
√
〈E0|E0〉E · 〈E3|E3〉E, (5.59)

|<〈E1|E2〉E| ≤
√
〈E1|E1〉E · 〈E2|E2〉E. (5.60)
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Note that we evaluate the minimum because we assume the worst-case scenario—

namely, that Eve chooses her attack so as to minimize S(A|E) (and, thus, minimize

the key rate r).

In practice, we can minimize over a single parameter (say, <〈E1|E2〉E), and take

the other one (<〈E0|E3〉E) as the right-hand-side of Equation (5.58), minus the

free parameter <〈E1|E2〉E (but not less than 0). This will give us the minimum,

because for any given value of <〈E1|E2〉E, it is beneficial for Eve to have the

smallest possible (non-negative) value of <〈E0|E3〉E.

3. Compute H(A|B) using the observed parameters:

H(A|B) = H(AB)−H(B)

= H

(
〈E0|E0〉E

M
,
〈E1|E1〉E

M
,
〈E2|E2〉E

M
,
〈E3|E3〉E

M

)
− H

(
〈E0|E0〉E + 〈E2|E2〉E

M
,
〈E1|E1〉E + 〈E3|E3〉E

M

)
. (5.61)

4. Find the final key rate expression, using the Devetak-Winter key rate formula [DW05]:

r = S(A|E)−H(A|B). (5.62)

5.4 Examples

The key rate bounds we found in Section 5.3 work in a wide range of scenarios, and they

can be evaluated for all the possible values of all probabilities in Table 5.3. We would

now like to evaluate our bounds for two concrete scenarios, that are easily comparable

with attacks on other QKD and SQKD protocols.

5.4.1 First Scenario: Single-Photon Attacks without Losses

In the first scenario, let us assume that Bob has a perfect qubit source (no multi-photon

pulses) and there are no photon losses. Furthermore, let us assume that Eve does not

perform a multi-qubit attack at all (not even in her first attack). In this scenario, the

only free parameters are the noises QZ, QX in the channel: QZ is the probability that a

|0, 1〉B state is flipped into |1, 0〉B (and vice versa) in “raw key” rounds, and QX is the

probability that a |+〉B state is flipped into |−〉B in “test” rounds.

We consider the following noise model:

• In the “raw key” rounds, we consider that both the forward channel (from Bob to

Alice) and the reverse channel (from Alice to Bob) are depolarizing channels with

error QZ, as follows:

EQZ
(ρ) = (1− 2QZ)ρ+ 2QZ ·

I2
2
. (5.63)
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• In the “test” rounds, we consider that the whole channel (from Bob to Alice and

back to Bob; notice that Alice does nothing in such rounds) is a depolarizing

channel with error QX, as follows:

EQX
(ρ) = (1− 2QX)ρ+ 2QX ·

I2
2
. (5.64)

Here, in the forward attack, Eve always replaces Bob’s original state |0, 1〉x,B ,
|0,1〉B+|1,0〉B√

2
by the following state (a special case of Equation (5.5)):

|ψ0〉 = |0, 1〉B|e0,1〉E + |1, 0〉B|e1,0〉E, (5.65)

with 〈e0,1|e0,1〉E = 〈e1,0|e1,0〉E = 1
2 .

5.4.2 Second Scenario: Single-Photon Attacks with Losses

In the second scenario, our noise model remains identical to the first scenario, except

two modifications:

• In the forward channel (from Bob to Alice), a loss occurs with probability pF` ; if it

does not occur, the original noise model is applied.

• In the reverse channel (from Alice to Bob), a loss occurs with probability pR` ; if it

does not occur, the original noise model is applied.

We assume, in particular, that a loss is final : if a loss occurs in the forward channel, no

photon will ever be observed in this round by either Alice or Bob.

5.4.3 Evaluation Results

In Table 5.4 we evaluate all probabilities in both scenarios.

Table 5.4: Computing all probabilities in Table 5.3 for both examples (both scenarios).

Probability Single-Photon; no Losses Single-Photon + Losses

〈E0|E0〉E = 〈E3|E3〉E = 1
4(1−QZ) 1

4(1− pF` )(1− pR` )(1−QZ)
〈E1|E1〉E = 〈E2|E2〉E = 1

4QZ
1
4(1− pF` )(1− pR` )QZ

M = 1
2

1
2(1− pF` )(1− pR` )

p0,+ = p1,+ = 1
8

1
8(1− pF` )(1− pR` )

p+,+ = 1−QX (1− pF` )(1− pR` )(1−QX)

pCTRL:0 = pCTRL:1 = 1
2

1
2(1− pF` )(1− pR` )

pdouble = 0 0

pcreate:0 = pcreate:1 = 0 0
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First scenario—single-photon attacks without losses: Substituting the prob-

abilities from Table 5.4 in Equations (5.58)–(5.60), we find the three constraints to

be:

< (〈E0|E3〉E + 〈E1|E2〉E) ≥ 1

4
− 1

2
QX, (5.66)

|<〈E0|E3〉E| ≤
1

4
(1−QZ), (5.67)

|<〈E1|E2〉E| ≤
1

4
QZ. (5.68)

As explained in Subsection 5.3.7, we numerically find the minimal value of the key-rate

expression r = S(A|E)−H(A|B) for various values of QZ,X by using the lower bound

on S(A|E) presented in Equation (5.54), which is evaluated under the three above

constraints on the values of <〈E0|E3〉E and <〈E1|E2〉E. This numerical optimization

yields the graph shown in Figure 5.1, presenting two cases:

• In the dependent noise model, where the error rates QX and QZ are identical

(namely, QX = QZ), we recover the asymptotic BB84 noise tolerance of 11%.

• In the independent noise model, where the two-way channel is modeled as two

independent depolarizing channels (namely, QX = 2QZ(1 − QZ)), the maximal

(asymptotic) noise tolerance is 7.9%.

Interestingly, both values agree with the values found in [Kra17] for the original “QKD

with Classical Bob” SQKD protocol [BKM07].

In both scenarios, because the Mirror protocol is two-way, we compare it to two

copies of BB84 performed from Alice to Bob; this is a common comparison for two-

way protocols (see, for example, [BLMR13]). The key rate of two copies of BB84 is

2(1− 2H2(p))—namely, twice the original key rate of BB84.

Second scenario—single-photon attacks with losses: Substituting the proba-

bilities from Table 5.4 in Equations (5.58)–(5.60), we find the three constraints to

be:

< (〈E0|E3〉E + 〈E1|E2〉E) ≥ (1− pF` )(1− pR` )

(
1

4
− 1

2
QX

)
, (5.69)

|<〈E0|E3〉E| ≤
1

4
(1− pF` )(1− pR` )(1−QZ), (5.70)

|<〈E1|E2〉E| ≤
1

4
(1− pF` )(1− pR` )QZ. (5.71)

The numerical analysis for this scenario is similar to the previous one. However, here

we must also model the loss rates, so we consider a fiber channel with loss rates

pF,R` = 1 − 10−α` (where α = 0.15 dB
km is the loss coefficient, and ` is measured in

kilometers). We consider two examples of fiber lengths: ` = 10km and ` = 50km.

Results are presented in Figure 5.2.
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Figure 5.1: A graph of the final key rate versus the noise level of the Mirror
protocol in the first scenario (single-photon attacks without losses), for dependent

(QX = QZ) and independent (QX = 2QZ(1−QZ)) noise models, compared to two
copies of BB84.
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Figure 5.2: A graph of the final key rate versus the noise level of the Mirror
protocol in the second scenario (single-photon attacks with losses), compared to

two copies of BB84, for two possible lengths of fiber channels (` = 10km and ` = 50km).
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5.5 Conclusion

We have proved security of the Mirror protocol against uniform collective attacks,

including attacks where the adversary Eve sends multiple photons towards the classical

user (Alice). Our analysis shows that the asymptotic noise tolerance of the Mirror

protocol is comparable, in the single-photon scenario, to the “QKD with Classical Bob”

protocol [BKM07, Kra17] and even to the BB84 protocol. Moreover, we have suggested

a general framework for analyzing multi-photon attacks; this framework may be useful

for other QKD and SQKD protocols, too.

We conclude the Mirror protocol is theoretically secure against uniform collective

attacks, and we suspect similar security results can be achieved for general attacks.

Extensions of our results, such as security against general attacks, security against

multi-photon attacks on both channels, and evaluation of our key-rate formula in the

multi-photon case, are left for future research. Our extension to multi-photon attacks

also suggests the intriguing possibility of analyzing SQKD protocols employing decoy

states and similar counter-measures against practical attacks.

Our results show that SQKD protocols can potentially be implemented in a secure

way, overcoming the practical attacks suggested by [TLC09, BKM09]. They therefore

hold the potential to transform the SQKD protocols, making them not only theoretically

fascinating, but also practically secure.
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Chapter 6

Composable Security of the

“BB84-INFO-z” Protocol Against

Collective Attacks

In this chapter, we present a fully composable security proof of a new QKD protocol,

that we name “BB84-INFO-z”, against collective attacks (described in Subsection 2.3.2).

The proof uses BBBMR’s security approach, that is described in Subsection 2.3.3.

This chapter is based on a paper published in Theoretical Computer Science in 2020

by Michel Boyer, Rotem Liss, and Tal Mor [BLM20].

This is an extended (journal) version; the conference version was presented in the

COMPLEXIS conference in 2017 by the same authors [BLM17] and was part of my M.Sc.

thesis [Lis17], but its security proof was not fully composable. This journal version is

extended to make the security proof (against collective attacks) fully composable.

6.1 Introduction

In this chapter, we extend the security proof of BB84 against collective attacks given

in [BGM09], and we prove security of a QKD protocol we shall name “BB84-INFO-z”

against collective attacks. This protocol is almost identical to BB84, except that all

its INFO bits are in the z basis; in other words, the x basis is used only for testing.

The bits are thus partitioned into three disjoint sets: INFO, TEST-Z, and TEST-X, of

arbitrary sizes (n INFO bits, nz TEST-Z bits, and nx TEST-X bits).

Unlike the other papers that discussed BBBMR’s security approach [BM97b, BM97a,

BBBGM02, BBBMR06, BGM09] (see Subsection 2.3.3 for details), here we prove

fully composable security of BB84-INFO-z against collective attacks. The method

implemented in this chapter also directly applies to the BB84 security proof of [BGM09]

against collective attacks, proving the fully composable security of BB84 against collective

attacks. In Chapter 7 we further extend this method to show that the BB84 security

proof of [BBBMR06] proves the fully composable security of BB84 (and, furthermore, of
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many BB84-like protocols) against joint attacks. (We note that in the conference version

of this chapter [BLM17], we used a weaker security definition: it was not sufficient for

proving fully composable security, but it was more composable than in previous papers.)

6.2 Full Definition of the “BB84-INFO-z” Protocol

Below we formally define all steps of the BB84-INFO-z protocol, as used in this chapter.

See Section 2.7 for an explanation of the notation of bit strings (s, b, etc.), and see

Section 1.1 for an explanation of the notations |00〉, |10〉, |01〉, |11〉.

1. Before the protocol, Alice and Bob choose some shared (and public) parameters:

numbers n, nz, and nx (we denote N , n+ nz + nx), error thresholds pa,z and

pa,x, an r × n parity check matrix PC (corresponding to a linear error-correcting

code C), and an m × n privacy amplification matrix PK (representing a linear

key-generation function). It is required that all r +m rows of the matrices PC

and PK put together are linearly independent.

2. Alice randomly chooses a partition P = (s, z,b) of the N bits by randomly

choosing three N -bit strings s, z,b ∈ FN
2 that satisfy |s| = n, |z| = nz, |b| = nx,

and |s + z + b| = N . Thus, P partitions the set of indexes {1, 2, ..., N} into three

disjoint sets:

• I (INFO bits, where sj = 1) of size n;

• TZ (TEST-Z bits, where zj = 1) of size nz; and

• TX (TEST-X bits, where bj = 1) of size nx.

3. Alice randomly chooses an N -bit string i ∈ FN
2 and sends the N qubit states

|ib11 〉, |i
b2
2 〉, . . . , |i

bN
N 〉, one after the other, to Bob using the quantum channel. Notice

that Alice uses the z basis for sending the INFO and TEST-Z bits, and that she

uses the x basis for sending the TEST-X bits. Bob keeps each received qubit in

quantum memory, not measuring it yet1.

4. Alice sends to Bob over the classical channel the bit string b = b1 . . . bN . Bob

measures each of the qubits he saved in the correct basis (namely, when measuring

the i-th qubit, he measures it in the z basis if bi = 0, and he measures it in the x

basis if bi = 1).

The bit string measured by Bob is denoted by iB. If there is no noise and no

eavesdropping, then iB = i.

1 Here we assume that Bob has a quantum memory and can delay his measurement. In practical
implementations, Bob usually cannot do that, but is assumed to measure in a randomly-chosen basis (z
or x), so that Alice and Bob later discard the qubits measured in the wrong basis. In that case, we
need to assume that Alice sends more than N qubits, so that N qubits are finally detected by Bob and
measured in the correct basis. In the original scheme, the probability of choosing each basis (z or x)
was 1

2
, which caused half of the sent qubits to be lost; in the improved scheme suggested by [LCA05],

the probability of choosing the z basis can be much higher, which means that fewer qubits get lost.
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5. Alice sends to Bob over the classical channel the bit string s. The INFO bits

(that will be used for creating the final key) are the n bits with sj = 1, while the

TEST-Z and TEST-X bits (that will be used for testing) are the nz +nx bits with

sj = 0. We denote the substrings of i,b that correspond to the INFO bits by is

and bs, respectively.

6. Alice and Bob both publish the bit values they have for all the TEST-Z and

TEST-X bits, and they compare the bit values. If more than nz · pa,z TEST-Z

bits are different between Alice and Bob or more than nx · pa,x TEST-X bits are

different between them, they abort the protocol. We note that pa,z and pa,x (the

pre-agreed error thresholds) are the maximal allowed error rates on the TEST-Z

and TEST-X bits, respectively—namely, in each basis (z and x) separately.

7. The values of the remaining n bits (the INFO bits, with sj =1) are kept in secret

by Alice and Bob. The bit string of Alice is denoted x = is, and the bit string of

Bob is denoted xB.

8. Alice sends to Bob the syndrome of x (with respect to the error-correcting code C

and to its corresponding parity check matrix PC), that consists of r bits and is

defined as ξ = xPT
C . By using ξ, Bob corrects the errors in his xB string (so that

it is the same as x).

9. The final key consists of m bits and is defined as k = xPT
K . Both Alice and Bob

compute it.

The protocol is defined similarly to BB84 (and to its description in [BGM09]), except

that it uses the generalized bit numbers n, nz, and nx (numbers of INFO, TEST-Z,

and TEST-X bits, respectively); that it uses the partition P = (s, z,b) for dividing the

N -bit string i into three disjoint sets of indexes (I, TZ, and TX); and that it uses two

separate thresholds (pa,z and pa,x) instead of one (pa).

6.3 Security Proof for the BB84-INFO-z Protocol Against

Collective Attacks

6.3.1 The General Collective Attack of Eve

Before the beginning of the QKD protocol (and, thus, independently of i and P), Eve

chooses some collective attack to perform. A collective attack is bitwise: it attacks

each qubit separately, by using a separate probe (ancillary state). Each probe is

attached by Eve to the quantum state, and Eve saves it in a quantum memory. Eve

can keep her quantum probes indefinitely, even after the final key is used by Alice and

Bob; and she can perform, at any time of her choice, an optimal measurement of all

her probes together, chosen based on all the information she has at the time of the
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measurement (including the classical information sent during the protocol, and including

the information she acquires when Alice and Bob use the key).

Given the j-th qubit |ibjj 〉Tj sent from Alice to Bob (1 ≤ j ≤ N), Eve attaches a

probe state |0E〉Ej and applies some unitary operator Uj of her choice to the compound

system |0E〉Ej |i
bj
j 〉Tj . Then, Eve keeps to herself (in a quantum memory) the subsystem

Ej , which is her probe state; and sends to Bob the subsystem Tj , which is the qubit

sent from Alice to Bob (which may have been modified by her attack Uj).

The most general collective attack Uj of Eve on the j-th qubit, represented in the

orthonormal basis {|0bj 〉Tj , |1bj 〉Tj}, is

Uj |0E〉Ej |0bj 〉Tj = |Ebj00〉Ej |0
bj 〉Tj + |Ebj01〉Ej |1

bj 〉Tj , (6.1)

Uj |0E〉Ej |1bj 〉Tj = |Ebj10〉Ej |0
bj 〉Tj + |Ebj11〉Ej |1

bj 〉Tj , (6.2)

where |Ebj00〉Ej , |E
bj
01〉Ej , |E

bj
10〉Ej , and |Ebj11〉Ej are non-normalized states in Eve’s probe

system Ej attached to the j-th qubit.

We thus notice that Eve can modify the original product state of the compound

system, |0E〉Ej |i
bj
j 〉Tj , into an entangled state (e.g., |Ebj00〉Ej |0bj 〉Tj + |Ebj01〉Ej |1bj 〉Tj ).

Eve’s attack may thus cause Bob’s state to become entangled with her probe. On

the one hand, this may give Eve some information on Bob’s state; on the other hand,

this causes disturbance that may be detected by Bob. Our security proof shows that

the information obtained by Eve and the disturbance caused by Eve are inherently

correlated: this correlation is the basic reason QKD protocols are secure.

6.3.2 Results from [BGM09]

The security proof of BB84-INFO-z against collective attacks is very similar to the

security proof of BB84 itself against collective attacks, that was detailed in [BGM09].

Most parts of the proof are not affected at all by the changes made to BB84 to get the

BB84-INFO-z protocol (changes detailed in Section 6.2 of this chapter), because these

parts assume fixed strings s and b, and because the attack is collective (so the analysis

is restricted to the INFO bits).

Therefore, the reader is referred to the proof in Section 2 and Subsections 3.1–3.5

of [BGM09], that applies to BB84-INFO-z without any changes (except changing the

total number of bits, 2n, to N , which does not affect the proof at all), and that will not

be repeated here.

We denote the rows of the error-correction parity check matrix PC as the vectors

v1, . . . , vr in Fn
2 , and the rows of the privacy amplification matrix PK as the vectors

vr+1, . . . , vr+m. We also define, for every r′, Vr′ , Span{v1, ..., vr′}; and we define

dr,m , min
r≤r′<r+m

dH(vr′+1, Vr′) = min
r≤r′<r+m

dr′,1. (6.3)

For a 1-bit final key k ∈ {0, 1}, we define ρ̂k to be the state of Eve corresponding to
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the final key k, given that she knows ξ. Thus,

ρ̂k =
1

2n−r−1

∑
x
∣∣ xPT

C = ξ

x · vr+1 = k

ρb
′

x , (6.4)

where ρb
′

x is Eve’s state after the attack, given that Alice sent the INFO bit string x

encoded in the bases b′ = bs. In [BGM09], the state ρ̃k was also defined: it is a lift-up

of ρ̂k (which means that ρ̂k is a partial trace of ρ̃k), in which the states ρb
′

x appearing in

ρ̂k are replaced by their purifications (see full definition in Subsection 3.4 of [BGM09]).

In the end of Subsection 3.5 of [BGM09], it was found that (in the case of a 1-bit

final key, i.e., m = 1)

1

2
tr |ρ̃0 − ρ̃1| ≤ 2

√
Pr

[
|CI| ≥

dr,1
2
| BI = b′, s

]
, (6.5)

where CI is a random variable whose value is the n-bit string of errors on the n INFO

bits; BI is a random variable whose value is the n-bit string of bases of the n INFO bits;

b′ is the bit-flipped string of b′ = bs; and dr,1 (and, in general, dr,m) was defined above.

Now, according to [NC00, Theorem 9.2 and page 407], and using the fact that ρ̂k is

a partial trace of ρ̃k, we find that 1
2 tr |ρ̂0 − ρ̂1| ≤ 1

2 tr |ρ̃0 − ρ̃1|. From this result and

from inequality (6.5) we deduce that

1

2
tr |ρ̂0 − ρ̂1| ≤ 2

√
Pr

[
|CI| ≥

dr,1
2
| BI = b′, s

]
. (6.6)

6.3.3 Bounding the Differences Between Eve’s States

We define c , i + iB: namely, c is the XOR of the N -bit string i sent by Alice and of

the N -bit string iB measured by Bob. For all indexes 1 ≤ ` ≤ N , c` = 1 if and only if

Bob’s `-th bit value is different from the `-th bit sent by Alice. The partition P divides

the N bits into n INFO bits, nz TEST-Z bits, and nx TEST-X bits. The corresponding

substrings of the error string c are cs (the string of errors on the INFO bits), cz (the

string of errors on the TEST-Z bits), and cb (the string of errors on the TEST-X bits).

The random variables that correspond to cs, cz, and cb are denoted by CI, CTZ
, and

CTX
, respectively.

We define C̃I to be a random variable whose value is the string of errors on the

INFO bits if Alice had encoded and sent the INFO bits in the x basis (instead of the z

basis dictated by the protocol). In these notations, Equation (6.6) reads as

1

2
tr |ρ̂0 − ρ̂1| ≤ 2

√
Pr

[
|C̃I| ≥

dr,1
2
| P

]
= 2

√
Pr

[
|C̃I| ≥

dr,1
2
| cz, cb,P

]
, (6.7)

using the fact that Eve’s attack is collective, so the qubits are attacked independently,
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and, therefore, the errors on the INFO bits are independent of the errors on the TEST-Z

and TEST-X bits (namely, of cz and cb).

As explained in [BGM09], Equation (6.7) was not derived for the actual attack

U = U1 ⊗ . . .⊗UN applied by Eve, but for a virtual flat attack (that depends on b and

therefore could not have been applied by Eve). That flat attack gives the same states

ρ̂0 and ρ̂1 as given by the original attack U , and it gives a lower (or the same) error rate

in the conjugate basis. Therefore, Equation (6.7) holds for the original attack U , too.

This means that, starting from this point, all our results apply to the original attack U

rather than to the flat attack.

So far, we have discussed a 1-bit key. We will now discuss a general m-bit key k.

We define ρ̂k to be the state of Eve corresponding to the final key k, given that she

knows ξ:

ρ̂k =
1

2n−r−m

∑
x
∣∣xPT

C = ξ

xPT
K = k

ρb
′

x . (6.8)

Proposition 6.1. For any two keys k,k′ of m bits,

1

2
tr |ρ̂k − ρ̂k′ | ≤ 2m

√
Pr

[
|C̃I| ≥

dr,m
2
| cz, cb,P

]
. (6.9)

Proof. We define the key kj , for 0 ≤ j ≤ m, to consist of the first j bits of k′ and the

last m − j bits of k. This means that k0 = k, km = k′, and kj−1 differs from kj at

most on a single bit (the j-th bit).

First, we find a bound on 1
2 tr |ρ̂kj−1

− ρ̂kj |: since kj−1 differs from kj at most on

a single bit (the j-th bit, given by the formula x · vr+j), we can use the same proof

that gave us Equation (6.7), attaching the other (identical) key bits to ξ of the original

proof; and we find that

1

2
tr |ρ̂kj−1

− ρ̂kj | ≤ 2

√
Pr

[
|C̃I| ≥

dj
2
| cz, cb,P

]
, (6.10)

where we define dj as dH(vr+j , V
′
j ), and V ′j , Span{v1, v2, . . . , vr+j−1, vr+j+1, . . . , vr+m}.

Now we notice that dj is the Hamming distance between vr+j and some vector in

V ′j , which means that dj =
∣∣∑r+m

i=1 aivi
∣∣ with ai ∈ F2 and ar+j 6= 0. The properties of

Hamming distance assure us that dj is at least dH(vr′+1, Vr′) for some r ≤ r′ < r +m.

Therefore, we find that dr,m = minr≤r′<r+m dH(vr′+1, Vr′) ≤ dj .

The result dr,m ≤ dj implies that if |C̃I| ≥ dj
2 then |C̃I| ≥ dr,m

2 . Therefore, Equa-

tion (6.10) implies

1

2
tr |ρ̂kj−1

− ρ̂kj | ≤ 2

√
Pr

[
|C̃I| ≥

dr,m
2
| cz, cb,P

]
. (6.11)

72



Now we use the triangle inequality for norms to find

1

2
tr |ρ̂k − ρ̂k′ | =

1

2
tr |ρ̂k0 − ρ̂km | ≤

m∑
j=1

1

2
tr |ρ̂kj−1

− ρ̂kj |

≤ 2m

√
Pr

[
|C̃I| ≥

dr,m
2
| cz, cb,P

]
, (6.12)

as we wanted.

We would now like to bound the expected value (namely, the average value) of the

trace distance between two states of Eve corresponding to two final keys. However, we

should take into account that if the test fails, no final key is generated, in which case

we define the distance to be 0. We thus define the random variable ∆
(pa,z ,pa,x)
Eve (k,k′) for

any two final keys k,k′:

∆
(pa,z ,pa,x)
Eve (k,k′|P, ξ, cz, cb) ,


1
2 tr |ρ̂k − ρ̂k′ | if

|cz|
nz
≤ pa,z and

|cb|
nx
≤ pa,x

0 otherwise
.

(6.13)

We need to bound the expected value 〈∆(pa,z ,pa,x)
Eve (k,k′)〉, that is given by:

〈∆(pa,z ,pa,x)
Eve (k,k′)〉 =

∑
P,ξ,cz,cb

∆
(pa,z ,pa,x)
Eve (k,k′|P, ξ, cz, cb) · Pr(P, ξ, cz, cb). (6.14)

(In Subsection 6.3.6 we prove that this expected value is indeed the quantity we need to

bound for proving fully composable security, defined in Subsection 2.3.1.)

Theorem 6.2.

〈∆(pa,z ,pa,x)
Eve (k,k′)〉 ≤ 2m

√
Pr
[(
|C̃I|
n ≥

dr,m
2n

)
∧
( |CTZ

|
nz
≤ pa,z

)
∧
( |CTX

|
nx
≤ pa,x

)]
,

(6.15)

where |C̃I|
n is a random variable whose value is the error rate on the INFO bits if they

had been encoded in the x basis,
|CTZ

|
nz

is a random variable whose value is the error rate

on the TEST-Z bits, and
|CTX

|
nx

is a random variable whose value is the error rate on

the TEST-X bits.

Proof. We use the convexity of x2, namely, the fact that for all {pi}i satisfying pi ≥ 0

and
∑

i pi = 1, it holds that (
∑

i pixi)
2 ≤

∑
i pix

2
i . We find that:

〈∆(pa,z ,pa,x)
Eve (k,k′)〉2

=

 ∑
P,ξ,cz,cb

∆
(pa,z ,pa,x)
Eve (k,k′|P, ξ, cz, cb) · Pr(P, ξ, cz, cb)

2

(by (6.14))
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≤
∑

P,ξ,cz,cb

(
∆

(pa,z ,pa,x)
Eve (k,k′|P, ξ, cz, cb)

)2
· Pr(P, ξ, cz, cb) (by convexity of x2)

=
∑

P,ξ, |cz|
nz
≤pa,z ,

|cb|
nx
≤pa,x

(
1
2 tr |ρ̂k − ρ̂k′ |

)2 · Pr(P, ξ, cz, cb) (by (6.13))

≤ 4m2 ·
∑

P,ξ, |cz|
nz
≤pa,z ,

|cb|
nx
≤pa,x

Pr
[
|C̃I| ≥ dr,m

2 | cz, cb,P
]
· Pr(P, ξ, cz, cb) (by (6.9))

= 4m2 ·
∑

P, |cz|
nz
≤pa,z ,

|cb|
nx
≤pa,x

Pr
[
|C̃I| ≥ dr,m

2 | cz, cb,P
]
· Pr(P, cz, cb)

= 4m2 ·
∑
P

Pr
[(
|C̃I| ≥ dr,m

2

)
∧
( |CTZ

|
nz
≤ pa,z

)
∧
( |CTX

|
nx
≤ pa,x

)
| P
]
· Pr(P)

= 4m2 · Pr
[(
|C̃I| ≥ dr,m

2

)
∧
( |CTZ

|
nz
≤ pa,z

)
∧
( |CTX

|
nx
≤ pa,x

)]
, (6.16)

as we wanted.

6.3.4 Proof of Security

Following [BGM09] and [BBBMR06], we choose matrices PC and PK such that the

inequality
dr,m
2n > pa,x + ε is satisfied for some ε (we will explain in Subsection 6.3.7 why

this is possible). This means that

Pr
[(
|C̃I|
n ≥

dr,m
2n

)
∧
( |CTZ

|
nz
≤ pa,z

)
∧
( |CTX

|
nx
≤ pa,x

)]
≤ Pr

[(
|C̃I|
n > pa,x + ε

)
∧
( |CTX

|
nx
≤ pa,x

)]
. (6.17)

We will now prove the right-hand-side of (6.17) to be exponentially small in n.

As said earlier, the random variable C̃I corresponds to the bit string of errors on the

INFO bits if they had been encoded in the x basis. The TEST-X bits are also encoded

in the x basis, and the random variable CTX
corresponds to the bit string of errors on

these bits. Therefore, we can treat the selection of the indexes of the n INFO bits and

the nx TEST-X bits as a random sampling (after the numbers n, nz, and nx and the

indexes of the TEST-Z bits have all already been chosen) and use Hoeffding’s theorem

and Corollary 2.2 (that are described in Section 2.6).

Applying Corollary 2.2, we get:

Pr

[(
|C̃I|
n

> pa,x + ε

)
∧
(
|CTX

|
nx

≤ pa,x
)]
≤ e−2

(
nx

n+nx

)2
nε2
. (6.18)

In the above discussion, we have actually proved the following Theorem:

Theorem 6.3. Let us be given δ > 0, R > 0, and, for infinitely many values of n,

a family {vn1 , . . . , vnrn+mn} of linearly independent vectors in Fn
2 such that δ <

drn,mn
n

and mn
n ≤ R. Then for any pa,z, pa,x > 0 and εsec > 0 such that pa,x + εsec ≤ δ

2 , and

for any n, nz, nx > 0 and two mn-bit final keys k,k′, the distance between Eve’s states
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corresponding to k and k′ satisfies the following bound:

〈∆(pa,z ,pa,x)
Eve (k,k′)〉 ≤ 2Rne

−
(

nx
n+nx

)2
nε2sec . (6.19)

In Subsection 6.3.7 we explain why the vectors required by this Theorem exist.

We note that the quantity 〈∆(pa,z ,pa,x)
Eve (k,k′)〉 bounds the expected values of the

Shannon Distinguishability and of the mutual information between Eve and the final key,

as done in [BGM09] and [BBBMR06], which is sufficient for proving non-composable

security; but it also avoids composability problems: Eve is not required to measure

immediately after the protocol ends, but she is allowed to wait until she gets more

information. In Subsection 6.3.6 we use this bound for proving a fully composable

security.

6.3.5 Reliability

Security itself is not sufficient; we also need the key to be reliable (namely, to be the

same for Alice and Bob). This means that we should make sure that the number

of errors on the INFO bits is less than the maximal number of errors that can be

corrected by the error-correcting code. We demand that our error-correcting code can

correct n(pa,z + εrel) errors (we explain in Subsection 6.3.7 why this demand is satisfied).

Therefore, reliability of the final key with exponentially small probability of failure is

guaranteed by the following inequality: (as said, CI corresponds to the actual bit string

of errors on the INFO bits in the protocol, when they are encoded in the z basis)

Pr

[(
|CI|
n

> pa,z + εrel

)
∧
(
|CTZ

|
nz

≤ pa,z
)]
≤ e−2

(
nz

n+nz

)2
nε2rel . (6.20)

This inequality is proved by an argument similar to the one used in Subsection 6.3.4:

the selection of the indexes of the INFO bits and the TEST-Z bits is a random partition

of n+nz bits into two subsets of sizes n and nz, respectively (assuming that the indexes

of the TEST-X bits have already been chosen), and thus it corresponds to Hoeffding’s

sampling used for Corollary 2.2.

6.3.6 Proof of Fully Composable Security

We now prove that the BB84-INFO-z protocol satisfies the definition of composable

security for a QKD protocol: namely, that it satisfies Equation (2.2) presented in

Subsection 2.3.1. We prove that the expression 1
2 tr |ρABE − ρU ⊗ ρE| is exponentially

small in n, where ρABE is the actual joint state of Alice, Bob, and Eve; ρU is an ideal

(random, secret, and shared) key distributed to Alice and Bob; and ρE is the partial

trace of ρABE over the system AB (see Subsection 1.3.2).

To make reading easier, we use the following notations, where i is the bit string sent
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by Alice, iB is the bit string received by Bob, and c = i⊕ iB is the string of errors:

iAB
T ,

(
iz, ib, i

B
z , i

B
b

)
, (6.21)

T ,

1 if |cz|nz ≤ pa,z and |cb|nx
≤ pa,x

0 otherwise
. (6.22)

In other words, iAB
T consists of all TEST-Z and TEST-X bits of Alice and Bob; and T

is the random variable representing the result of the test.

According to the above definitions, the states ρABE and ρU are

ρABE =
∑

i,iB,P|T=1

Pr
(
i, iB,P

)
· |k〉A〈k|A ⊗ |k

′〉B〈k′|B

⊗
(
ρb
′

x,xB

)
E
⊗ |iAB

T ,P, ξ〉C〈iAB
T ,P, ξ|C, (6.23)

ρU =
1

2m

∑
k

|k〉A〈k|A ⊗ |k〉B〈k|B, (6.24)

where
(
ρb
′

x,xB

)
E

is defined to be Eve’s quantum state if Alice sends the INFO string

x = is in the bases b′ = bs and Bob gets the INFO string xB = iBs . All the other states

actually represent classical information: subsystems A and B represent the final keys

held by Alice (k = xPT
K ) and Bob (k′, that is obtained from xB, ξ = xPT

C , and PK), and

subsystem C represents the information published in the unjammable classical channel

during the protocol (this information is known to Alice, Bob, and Eve)—namely, iAB
T

(all the test bits), P (the partition), and ξ = xPT
C (the syndrome).

We note that in the definition of ρABE, we sum only over events in which the test is

passed (namely, in which the protocol is not aborted by Alice and Bob): in such cases,

an m-bit key is generated. The cases in which the protocol aborts do not exist in the

sum—namely, they are represented by the zero operator, as required by the definition of

composable security (see Subsection 2.3.1 and [Ren08, Subsection 6.1.2]). Thus, ρABE

is a non-normalized state, and tr(ρABE) is the probability that the test is passed.

To help us bound the trace distance, we define the following intermediate state:

ρ′ABE ,
∑

i,iB,P|T=1

Pr
(
i, iB,P

)
· |k〉A〈k|A ⊗ |k〉B〈k|B

⊗
(
ρb
′

x,xB

)
E
⊗ |iAB

T ,P, ξ〉C〈iAB
T ,P, ξ|C. (6.25)

This state is identical to ρABE, except that Bob holds the Alice’s final key (k) instead of

his own calculated final key (k′). In particular, the similarity between ρABE and ρ′ABE

means, by definition, that ρE , trAB (ρABE) and ρ′E , trAB (ρ′ABE) are the same state:

namely, ρE = ρ′E.
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Proposition 6.4. Under the same conditions as Theorem 6.3, it holds that

1

2
tr
∣∣ρ′ABE − ρU ⊗ ρE

∣∣ ≤ 2Rne
−
(

nx
n+nx

)2
nε2sec , (6.26)

for ρ′ABE and ρU defined above and for the partial trace ρE , trAB (ρABE).

Proof. We notice that in ρ′ABE, the only factors depending directly on x and xB (and

not only on k and ξ) are the probability Pr
(
i, iB,P

)
and Eve’s state

(
ρb
′

x,xB

)
E

. The

probability can be reformulated as:

Pr
(
i, iB,P

)
= Pr

(
iAB
T ,P, ξ

)
· Pr

(
k | iAB

T ,P, ξ
)

· Pr
(
x | k, iAB

T ,P, ξ
)
· Pr

(
xB | x,k, iAB

T ,P, ξ
)

= Pr
(
iAB
T ,P, ξ

)
· 1

2m
· 1

2n−r−m

· Pr
(
xB | x,k, iAB

T ,P, ξ
)
. (6.27)

(Because all the possible n-bit values of x have the same probability, 1
2n ; and because

all the r + m rows of the matrices PC and PK are linearly independent, so there are

exactly 2n−r−m values of x corresponding to each specific pair (ξ,k).)

Therefore, the state ρ′ABE takes the following form:

ρ′ABE =
1

2m

∑
k,iAB
T ,P,ξ|T=1

Pr
(
iAB
T ,P, ξ

)
· |k〉A〈k|A ⊗ |k〉B〈k|B

⊗

 1

2n−r−m

∑
x,xB

∣∣xPT
C = ξ

xPT
K = k

Pr
(
xB | x,k, iAB

T ,P, ξ
)
·
(
ρb
′

x,xB

)
E


⊗ |iAB

T ,P, ξ〉C〈iAB
T ,P, ξ|C

=
1

2m

∑
k,iAB
T ,P,ξ|T=1

Pr
(
iAB
T ,P, ξ

)
· |k〉A〈k|A ⊗ |k〉B〈k|B

⊗ (ρ̂k)E ⊗ |i
AB
T ,P, ξ〉C〈iAB

T ,P, ξ|C. (6.28)

(ρ̂k was defined in Equation (6.8).)

The partial trace ρ′E = trAB (ρ′ABE), that (as proved above) is the same as ρE, is

ρE = ρ′E =
1

2m

∑
k,iAB
T ,P,ξ|T=1

Pr
(
iAB
T ,P, ξ

)
· (ρ̂k)E ⊗ |i

AB
T ,P, ξ〉C〈iAB

T ,P, ξ|C, (6.29)

and the state ρU ⊗ ρE is

ρU ⊗ ρE =
1

22m

∑
k,k′′,iAB

T ,P,ξ|T=1

Pr
(
iAB
T ,P, ξ

)
· |k〉A〈k|A ⊗ |k〉B〈k|B
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⊗ (ρ̂k′′)E ⊗ |i
AB
T ,P, ξ〉C〈iAB

T ,P, ξ|C.

By using the triangle inequality for norms, since ρ′ABE and ρU⊗ ρE are the same (except

the difference between Eve’s states, (ρ̂k)E and (ρ̂k′′)E), we get, by using the definition

of 〈∆(pa,z ,pa,x)
Eve (k,k′′)〉 (Equation (6.14)) and Theorem 6.3:

1

2
tr
∣∣ρ′ABE − ρU ⊗ ρE

∣∣ ≤ 1

22m

∑
k,k′′,iAB

T ,P,ξ|T=1

Pr
(
iAB
T ,P, ξ

)
· 1

2
tr |(ρ̂k)E − (ρ̂k′′)E|

=
1

22m

∑
k,k′′

〈∆(pa,z ,pa,x)
Eve (k,k′′)〉

≤ 2Rne
−
(

nx
n+nx

)2
nε2sec , (6.30)

as we wanted.

We still have to bound the following difference:

ρABE − ρ′ABE =
∑

i,iB,P|T=1

Pr
(
i, iB,P

)
· |k〉A〈k|A ⊗

[
|k′〉B〈k′|B − |k〉B〈k|B

]
⊗

(
ρb
′

x,xB

)
E
⊗ |iAB

T ,P, ξ〉C〈iAB
T ,P, ξ|C

= Pr
((

k 6= k′
)
∧ (T = 1)

)
·

∑
i,iB,P

Pr
(
i, iB,P |

(
k 6= k′

)
∧ (T = 1)

)
· |k〉A〈k|A ⊗

[
|k′〉B〈k′|B − |k〉B〈k|B

]
⊗

(
ρb
′

x,xB

)
E
⊗ |iAB

T ,P, ξ〉C〈iAB
T ,P, ξ|C. (6.31)

Because the trace distance between every two normalized states is bounded by 1, and

because of the reliability proof in Subsection 6.3.5, we get:

1

2
tr
∣∣ρABE − ρ′ABE

∣∣ ≤ Pr
((

k 6= k′
)
∧ (T = 1)

)
≤ e−2

(
nz

n+nz

)2
nε2rel . (6.32)

(Because if k 6= k′, Alice and Bob have different final keys, and this means that the

error correction stage did not succeed. According to the discussion in Subsection 6.3.5,

this can happen only if there are too many errors in the information string—namely, if
|CI|
n > pa,z + εrel.)

To sum up, we get the following bound:

1

2
tr |ρABE − ρU ⊗ ρE| ≤

1

2
tr
∣∣ρABE − ρ′ABE

∣∣+
1

2
tr
∣∣ρ′ABE − ρU ⊗ ρE

∣∣
≤ e

−2
(

nz
n+nz

)2
nε2rel + 2Rne

−
(

nx
n+nx

)2
nε2sec . (6.33)

This bound is exponentially small in n. Thus, we have proved composable security of
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BB84-INFO-z.

6.3.7 Security, Reliability, and Error Rate Threshold

According to Theorem 6.3 and to the discussion in Subsection 6.3.5, to get both security

and reliability we only need vectors {vn1 , . . . , vnrn+mn} satisfying both the conditions

of the Theorem (distance
drn,mn

2n > δ
2 ≥ pa,x + εsec) and the reliability condition (the

ability to correct n(pa,z + εrel) errors). Such families were proven to exist in Appendix E

of [BBBMR06], giving the following upper bound on the bit-rate:

Rsecret ,
m

n
< 1−H2(2pa,x + 2εsec)−H2

(
pa,z + εrel +

1

n

)
, (6.34)

where H2(x) , −x log2(x)− (1− x) log2(1− x).

Note that we use here the error thresholds pa,x for security and pa,z for reliability.

This is possible, because in [BBBMR06] these conditions (security and reliability) on

the codes are discussed separately.

To get the asymptotic error rate thresholds, we require Rsecret > 0, and we get the

condition:

H2(2pa,x + 2εsec) +H2

(
pa,z + εrel +

1

n

)
< 1. (6.35)

The secure asymptotic error rate thresholds zone is shown in Figure 6.1 (it is below

the curve), assuming that 1
n is negligible. Note the trade-off between the error rates

pa,z and pa,x. Also note that in the case pa,z = pa,x, we get the same threshold as BB84

([BBBMR06] and [BGM09]), which is 7.56%.

6.4 Conclusion

In this chapter, we have proved the BB84-INFO-z protocol to be fully secure against

collective attacks. We have discovered that the results of BB84 hold very similarly for

BB84-INFO-z, with only two exceptions:

1. The error rates must be separately checked to be below the thresholds pa,z and

pa,x for the TEST-Z and TEST-X bits, respectively, while in BB84 the error rate

threshold pa applies to all the TEST bits together.

2. The exponents of Eve’s information (security) and of the failure probability of the

error-correcting code (reliability) are different than in [BGM09], because different

numbers of test bits are now allowed (nz and nx are arbitrary). This implies that

the exponents may decrease more slowly (or more quickly) as a function of n.

However, if we choose nz = nx = n (thus sending N = 3n qubits from Alice to

Bob), then we get exactly the same exponents as in [BGM09].

The asymptotic error rate thresholds found in this chapter allow us to tolerate a

higher threshold for a specific basis (say, the x basis) if we demand a lower threshold
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(0.0756, 0.0756)

Figure 6.1: The secure asymptotic error rates zone for BB84-INFO-z (below
the curve)

for the other basis (z). If we choose the same error rate threshold for both bases, then

the asymptotic bound is 7.56%, exactly the bound found for BB84 in [BBBMR06]

and [BGM09].

We conclude that even if we change the BB84 protocol to have INFO bits only in the

z basis, this does not harm its security and reliability (at least against collective attacks).

This does not even change the asymptotic error rate threshold. The only drawbacks

of this change are the need to check the error rate for the two bases separately, and

the need to either send more qubits (3n qubits in total, rather than 2n) or get a slower

exponential decrease of the exponents required for security and reliability.

We thus find that the feature of BB84, that both bases are used for information, is

not very important for security and reliability, and that BB84-INFO-z (that lacks this

feature) is almost as useful as BB84. This may have important implications on security

and reliability of other protocols that, too, use only one basis for information qubits, such

as the “three-state protocol” [Mor98] and some two-way protocols [BKM07, ZQLWL09].

We also present a better approach for the proof, that uses the quantum distance

between two states rather than the classical information. In [BGM09, BBBGM02,

BBBMR06], the classical mutual information between Eve’s information (after an

optimal measurement) and the final key was calculated (by using the trace distance

between two quantum states); although we should note that in [BGM09, BBBMR06],

the trace distance was used for the proof of security of a single bit of the final key even

when all other bits are given to Eve, and only the last stages of the proof discussed

bounding the classical mutual information. In this chapter, on the other hand, we use

80



the trace distance between the two quantum states until the end of the proof, which

allows us to prove fully composable security.

Therefore, our proof shows the fully composable security of BB84-INFO-z against

collective attacks (and, in particular, security even if Eve keeps her quantum states until

she gets more information when Alice and Bob use the key, rather than measuring them

at the end of the protocol); and a very similar approach can be applied to [BGM09],

immediately proving the composable security of BB84 against collective attacks. Our

proof also makes a step towards making the security proof in [BBBMR06] (security

proof of BB84 against joint attacks) prove the composable security of BB84 against

joint attacks, a proof fully achieved in Chapter 7.

Our results show that the BB84-INFO-z protocol can securely be used for distributing

a secret key; the security is of an ideal implementation and against an adversary limited

to collective attacks (a generalization to the most general attacks (joint attacks), by

using the methods of [BBBMR06], is proposed in Chapter 7). Moreover, security of

the final key is universally composable, which means that the key may be used for any

cryptographic purpose without harming security, even if Eve keeps her quantum states

and makes optimal use of any information she gets in the future.

The techniques described in our proof may be applied in the future for proving

security of other protocols by using similar methods, and, in particular, for proving

security of other QKD protocols that use only one basis for the information bits, such

as [Mor98, BKM07, ZQLWL09] mentioned above.
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Chapter 7

Composable Security of

Generalized BB84 Protocols

Against General (Joint) Attacks

In this chapter, we present a fully composable security proof of “generalized BB84” QKD

protocols against joint attacks (namely, against the most general theoretical attacks, as

described in Subsection 2.3.2). The protocols for which we prove security are the BB84-

INFO-z protocol (Subsection 7.3.1), the standard BB84 protocol (Subsection 7.3.2), the

“efficient BB84” protocol (Subsection 7.3.3), and the “modified efficient BB84” protocol

(Subsection 7.3.4). The proof uses BBBMR’s security approach, that is described in

Subsection 2.3.3.

This chapter is based on a paper being prepared by Michel Boyer and Rotem Liss1.

7.1 Full Definition of the Generalized BB84 Protocols

The protocols for which we prove security in this chapter belong to a generalized class

of BB84-like protocols. Below we formally define this general class of protocols. Some

of the details in this definition are decided by each specific protocol, but most of the

details are shared by all the protocols. See Section 2.7 for an explanation of the notation

of bit strings (s, b, etc.), and see Section 1.1 for an explanation of the notations

|0〉0, |1〉0, |0〉1, |1〉1.

1. Before the protocol begins, Alice and Bob choose some shared (and public)

parameters: the numbers N and n, the sets B and {Sb}b∈B and probability

distributions over them (decided by the specific protocol) that will control the

choice of the bit strings b, s ∈ FN
2 , the testing function T (decided by the specific

protocol), the r × n parity check matrix PC (corresponding to a linear error-

correcting code C), and the m×n privacy amplification matrix PK (representing a

1This paper is in preparation.
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linear key-generation function). It is required that all r +m rows of the matrices

PC and PK put together are linearly independent.

Formally, for choosing the sets B and {Sb}b∈B and the corresponding probability

distributions, Alice and Bob should choose the set B ⊆ FN
2 of basis strings, the

probabilities Pr(b) for all b ∈ B, the sets Sb ⊆ FN
2 of s strings for all b ∈ B,

and the probabilities Pr(s | b) for all b ∈ B and s ∈ Sb. We require that |s| = n

for all s ∈ Sb. The testing function T : FN−n
2 × FN−n

2 × FN
2 → {0, 1} must get

(iT ⊕ jT,bT, s) as inputs and give 0 or 1 as an output. In Section 7.3 we give

examples of protocols and their formal definitions using these notations.

2. Alice randomly chooses an N -bit string i ∈ FN
2 , an N -bit string b ∈ B, and an

N -bit string s ∈ Sb (that must satisfy |s| = n), and sends the N qubit states

|i1〉b1 , |i2〉b2 , . . . , |iN 〉bN , one after the other, to Bob using the quantum channel.

Bob keeps each received qubit in a quantum memory, not measuring it yet2.

3. Alice sends to Bob over the classical channel the bit string b = b1 . . . bN . Bob

measures each of the qubits he saved in the correct basis (namely, when measuring

the i-th qubit, he measures it in the z basis if bi = 0, and he measures it in the x

basis if bi = 1).

The bit string measured by Bob is denoted by j. The XOR of i and j is denoted

c , i⊕ j. If there is no noise and no eavesdropping, then i = j (that is, c = 0).

4. Alice sends s to Bob over the classical channel. The INFO bits (that will be used

for creating the final key) are the n bits with sj = 1, while the TEST bits (that

will be used for testing) are the N − n bits with sj = 0. We denote the substrings

of i, j, c,b that correspond to the INFO bits by iI, jI, cI, and bI, respectively; and

we denote the substrings of i, j, c,b that correspond to the TEST bits by iT, jT,

cT, and bT, respectively.

5. Alice and Bob both publish the bit values they have for all the TEST bits (iT

and jT, respectively), and they compute their XOR cT = iT ⊕ jT. They compute

T (cT,bT, s): if it is 0, they abort the protocol; if it is 1, they continue the run of

the protocol.

6. The values of the remaining n bits (the INFO bits, with sj =1) are kept in secret

by Alice and Bob. The bit string of Alice is iI, the bit string of Bob is jI, and

their XOR is cI.

2 Here we assume that Bob has a quantum memory and can delay his measurement. In practical
implementations, Bob usually cannot do that, but he is assumed to choose his own random basis string
b′′ ∈ B and measure in the bases it dictates. Later, Alice and Bob discard the qubits measured in the
wrong basis. In that case, we need to assume that Alice sends more than N qubits, so that N qubits
are finally detected by Bob and measured in the correct basis. In Appendix A of [BBBMR06] it is
explained why this change of the protocol does not hurt security.
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7. Alice sends to Bob the syndrome of iI (with respect to the error-correcting code

C and to its corresponding parity check matrix PC), that consists of r bits and is

defined as ξ , iIP
T
C . By using ξ, Bob corrects the errors in his jI string (so that

it is the same as iI).

8. The final key consists of m bits and is defined as k , iIP
T
K . Both Alice and Bob

compute it.

7.2 Bound on the Security Definition for the Generalized

BB84 Protocols

7.2.1 The Hypothetical “Inverted-INFO-Basis” Protocol

For the security proof, we use an alternative, hypothetical protocol, in which Alice

sends to Bob the qubits after inverting the bases of the INFO bits (without changing

the bases of the TEST bits). We call this protocol “hypothetical” because it is never

actually used by Alice and Bob, and we do not perform any reduction to it (or from it),

but we compute probabilities of certain events in the hypothetical protocol for use in

our security bound. In particular, we use the error rate in the hypothetical protocol for

bounding the trace distance in the security definition of the real protocol.

In the hypothetical protocol, Alice, Bob, and Eve do everything exactly as they

would do in the real protocol, except that Alice and Bob use (and publish) the basis

string b0 , b⊕ s instead of b: namely, they use the basis string bT for the TEST bits

and the basis string bI (the bitwise NOT of bI) for the INFO bits.

Formally, this hypothetical protocol is defined by replacing Steps 2–3 of the original

protocol (as described in Section 7.1) by the following steps:

2. Alice randomly chooses an N -bit string i ∈ FN
2 , an N -bit string b ∈ B, and an

N -bit string s ∈ Sb (that must satisfy |s| = n). Then, she computes the N -bit

string b0 , b⊕ s, and sends the N qubit states |i1〉b01 , |i2〉b02 , . . . , |iN 〉b0N , one after

the other, to Bob using the quantum channel. Bob keeps each received qubit in a

quantum memory, not measuring it yet.

3. Alice sends to Bob over the classical channel the bit string b0 = b01 . . . b
0
N . Bob

measures each of the qubits he saved in the correct basis (namely, when measuring

the i-th qubit, he measures it in the z basis if b0i = 0, and he measures it in the x

basis if b0i = 1).

We notice that in this protocol, Alice chooses b and s in the same way as she would

choose them in the real protocol, but uses (and sends to Bob for his use) b0 and s

instead.

In the security proof, we will use the notation of Prinverted-INFO-basis for calculating the

probability of a certain event assuming that Alice and Bob use the hypothetical protocol.
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In particular, we note that Prinverted-INFO-basis(· | b, s) is a conditional probability on

Alice choosing the bit strings b, s (while she actually uses the basis string b0).

It should be noted that Prinverted-INFO-basis(· | b, s) is usually the same as Pr(· | b0, s):

namely, the hypothetical protocol given that Alice chooses b, s (and thus uses b0, s)

is the same as the real protocol given that Alice chooses b0, s. However, the second

notation is not always well-defined, because it may be the case that b ∈ B while b0 /∈ B,

or that s ∈ Sb while s /∈ Sb0 ; therefore, it may be the case that b0 is not an allowed basis

string for the real protocol. In the standard BB84 protocol (see Subsection 7.3.2), such

problems are impossible, and this is why [BBBMR06] uses the notation of Pr(· | b0, s)

instead of Prinverted-INFO-basis(· | b, s). However, in our chapter, we discuss generalized

BB84 protocols, and we must use the notation of Prinverted-INFO-basis(· | b, s).3

7.2.2 The General Joint Attack of Eve

Before the beginning of the QKD protocol (and, thus, independently of i, b, and s),

Eve chooses some joint attack to perform. In a joint attack, all the qubits are attacked

by using a shared giant probe (ancillary state) kept by Eve. Eve saves her probe in a

quantum memory and can keep it indefinitely, even after the final key is used by Alice

and Bob; and she can perform, at any time of her choice, an optimal measurement

of her giant probe, chosen based on all the information she has at the time of the

measurement (including the classical information sent during the protocol, and including

the information she acquires when Alice and Bob use the key).

Given that Alice sends to Bob the state |i〉b , ⊗Nj=1|ij〉bj (namely, the N -bit string

is i and the N -bit basis string is b), Eve attaches a probe state |0〉E and applies some

unitary operator U of her choice to the compound system |0〉E|i〉b. Then, Eve keeps

to herself (in a quantum memory) her probe state, and she sends to Bob the N -qubit

quantum state sent from Alice to Bob (which may have been modified due to her attack

U).

The most general joint attack U of Eve is

U |0〉E|i〉b =
∑
j∈FN2

|E′i,j〉b|j〉b, (7.1)

where |E′i,j〉b are non-normalized states in Eve’s probe system. We note that

〈E′i,j|E′i,j〉b = Pr(j | i,b, s). (7.2)

Writing the INFO and TEST bits of Alice and Bob separately (iT, iI instead of i, and

jT, jI instead of j), we can denote |E′i,j〉b by |E′iT,iI,jT,jI〉b.

In Subsection 3.4 of [BBBMR06], the notation of |EiI,jI〉b,s is introduced. This

notation is useful, because it treats iT and jT as constants (since they are ultimately

3 It is also possible that Pr(b, s) 6= Pr(b0, s), in which case the use of b0, s in the real protocol does
not happen with the same probability as the use of b0, s in the hypothetical protocol.
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published by Alice and Bob, and then they are known to Eve), assuming their values to

be known. It is defined as

|EiI,jI〉b,s ,
1√

Pr(jT | iT, iI,b, s)
|E′iT,iI,jT,jI〉b. (7.3)

We note that |EiI,jI〉b,s also depends on the constants iT, jT (and not only on iI, jI,b, s).

According to Equations (3.22)–(3.23) of [BBBMR06], given that Alice sends iI, iT,b, s

and that Bob measures jT, the normalized state of Eve and Bob is

|ψiI〉 =
∑
jI∈Fn2

|EiI,jI〉b,s|jI〉b, (7.4)

and it also holds that

〈EiI,jI |EiI,jI〉b,s = Pr(jI | iI, iT, jT,b, s). (7.5)

Let us define ρb,siI,jI
(which also depends on iT, jT) to be the normalized state of Eve

if Alice sends iI, iT,b, s and Bob measures jI, jT. That is, ρb,siI,jI
is the normalization of

|E′i,j〉b and of |EiI,jI〉b,s, so

ρb,siI,jI
,

|EiI,jI〉b,s〈EiI,jI |
Pr(jI | iI, iT, jT,b, s)

=
|E′i,j〉b〈E′i,j|
Pr(j | i,b, s)

. (7.6)

The state of Eve after her attack (tracing out Bob) is

ρiI , trBob(|ψiI〉〈ψiI |) =
∑
jI∈Fn2

|EiI,jI〉b,s〈EiI,jI | =
∑
jI∈Fn2

Pr(jI | iI, iT, jT,b, s)ρb,siI,jI
, (7.7)

and we define its purification |ϕiI〉 (so that ρiI is a partial trace of |ϕiI〉) as

|ϕiI〉 ,
∑
jI∈Fn2

|EiI,jI〉b,s|iI ⊕ jI〉. (7.8)

7.2.3 The Symmetrized Attack of Eve

In [BBBMR06], the most general joint attack is not directly analyzed: for simplicity, it

is assumed that Eve applies a process called symmetrization, resulting in a symmetrized

attack. The process of symmetrization is always beneficial for Eve (it does not change the

error rate, and we prove in Proposition 7.4 that it does not decrease Eve’s information),

so a security proof against all symmetrized attacks implies a security proof against all

the possible joint attacks.

In Eve’s original attack, she has her own probe subsystem E. In the symmetriza-

tion process, Eve adds another probe subsystem M, in the initial state of |0x〉M ,
1√
2N

∑
m∈FN2

|m〉M. Given the original attack U (applied to Alice’s qubits and to the

probe E), the symmetrized attack U sym (applied to Alice’s qubits and to both probes E
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and M) is defined by

U sym , (IE ⊗ S†)(U ⊗ IM)(IE ⊗ S), (7.9)

where S is a unitary operation applied to Alice’s qubits and to the probe M, and it

operates as follows:

S|i〉b|m〉M = (−1)(i⊕b)·m|i⊕m〉b|m〉M. (7.10)

Intuitively, Eve first XORs Alice’s bit values with a random string m (kept by her); then

she applies her original attack; and then she reverses the XOR with m. Full definition

and explanations are available in Subsection 3.1 of [BBBMR06].

In this chapter, we use several properties of the symmetrized attack. First of all, the

“Basic Lemma of Symmetrization” (Lemma 3.1 of [BBBMR06]) gives the expression for

|Esym
i,j
′〉b (of the symmetrized attack) as a function of |E′i,j〉b (of the original attack):

|Esym
i,j
′〉b =

1√
2N

∑
m∈FN2

(−1)(i⊕j)·m|E′i⊕m,j⊕m〉b|m〉M. (7.11)

The second property we use, proved in Corollary 3.3 of [BBBMR06], is the fact that

the probabilities of the error strings cI and cT (if not conditioning on i) are not affected

by the symmetrization. Namely,

Prsym(cI, cT | b, s) = Pr(cI, cT | b, s). (7.12)

This is true for all the basis strings b; in particular, this is true for the basis string b0 ,

b⊕s used in the hypothetical “inverted-INFO-basis” protocol defined in Subsection 7.2.1,

so

Prsyminverted-INFO-basis(cI, cT | b, s) = Prinverted-INFO-basis(cI, cT | b, s). (7.13)

The third property we use, proved in Lemma 3.8 of [BBBMR06], is the fact that

the probabilities for errors in the TEST bits are not affected by the bases used for the

INFO bits:

Prsym(jT | iT,b, s) = Prsym(jT | iT,bT, s). (7.14)

In particular, since the only difference between the hypothetical “inverted-INFO-basis”

protocol and the real protocol is the basis string used for the INFO bits (bI and bI,

respectively), this means that the probabilities of errors in the TEST bits are the same

for both of these protocols:

Prsyminverted-INFO-basis(jT | iT,b, s) = Prsym(jT | iT,b, s). (7.15)

The fourth property we use, proved in Corollary 3.6 of [BBBMR06], is the fact

that the probability of any string of INFO bits iI is uniform (that is, 1
2n ) even when
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conditioning on the four parameters iT, jT,b, s, that are ultimately known to Eve (we

note that jT is affected by Eve’s attack). Namely,

Prsym(iI | iT, jT,b, s) =
1

2n
. (7.16)

7.2.4 Results from [BBBMR06]

The security proof of the generalized BB84 protocols is very similar to the security

proof of BB84 itself, that was detailed in [BBBMR06]. Most parts of the proof are not

affected at all by the changes made to BB84 to get the generalized BB84 protocols

(changes detailed in Section 7.1 of this chapter), because these parts assume fixed strings

s and b.

Therefore, the reader is referred to the proof in Section 3 (except Subsection 3.3.2)

and Subsections 4.1–4.4 of [BBBMR06], that applies to all the generalizations of BB84

without any changes (except changing the total number of bits, 2n, to N , which does

not affect the proof at all), and that will not be repeated here.

We denote the rows of the error-correction parity check matrix PC as the vectors

v1, . . . , vr in Fn
2 , and the rows of the privacy amplification matrix PK as the vectors

vr+1, . . . , vr+m. We also denote, for any 1 ≤ r′ ≤ r +m,

V exc
r′ , Span{v1, . . . , vr′−1, vr′+1, . . . , vr+m}, (7.17)

namely, V exc
r′ is the (r + m − 1)-dimensional vector space that spans all the error

correction and privacy amplification vectors, except vr′ ; and we also define

v̂ , min
r+1≤r′≤r+m

dH(vr′ , V
exc
r′ ). (7.18)

For a 1-bit final key k ∈ {0, 1} (that is, for m = 1), and given a symmetrized attack

of Eve, we define ρ̂symk to be the state of Eve corresponding to the final key k, given

that she knows ξ. Thus,

ρ̂symk =
1

2n−r−1

∑
iI

∣∣ iIP
T
C = ξ

iI · vr+1 = k

(ρiI)sym, (7.19)

where (ρiI)sym, as defined in Equation (7.7), is Eve’s state after the (symmetrized)

attack, given that Alice sent the INFO bit string iI (and given the bit strings iT, jT,b, s,

that are ultimately known to Eve).

In addition, we define the state ρ̃symk , that is a lift-up of ρ̂symk (which means that

ρ̂symk is a partial trace of ρ̃symk ), by assuming that Eve knows the purification |ϕsym
iI
〉
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defined in Equation (7.8):

ρ̃symk =
1

2n−r−1

∑
iI

∣∣ iIP
T
C = ξ

iI · vr+1 = k

|ϕsym
iI
〉〈ϕsym

iI
|. (7.20)

(This state was defined in Equation (4.10) of [BBBMR06], but was denoted there as

ρk(vr+1, ξ).)

In the end of Subsection 4.4 of [BBBMR06] (in its Proposition 4.6, and according to

the proof of Lemma 4.5, which appears in Appendix D.2 of [BBBMR06]), it was found

that (in the case of a 1-bit final key, i.e., m = 1), for any symmetrized attack,

1

2
tr |ρ̃sym0 − ρ̃sym1 | ≤ 2

√
Prsyminverted-INFO-basis

[
|CI| ≥

v̂

2
| iT, jT,b, s

]
, (7.21)

where CI is the random variable whose value equals to cI , iI⊕jI, and Prsyminverted-INFO-basis

means that the probability is taken over the hypothetical “inverted-INFO-basis” protocol

defined in Subsection 7.2.1 (to which Eve applies the same symmetrized attack that

she applies to the real protocol). We also note that v̂ was defined above, and that in

the current case (m = 1), its definition is simplified to v̂ = dH(vr+1, V
exc
r+1) (and V exc

r+1 is

simply Span{v1, . . . , vr}).

Now, according to [NC00, Theorem 9.2 and page 407], and using the fact that ρ̂symk
is a partial trace of ρ̃symk , we find out that

1

2
tr |ρ̂sym0 − ρ̂sym1 | ≤ 1

2
tr |ρ̃sym0 − ρ̃sym1 |. (7.22)

From this result and from Equation (7.21) we deduce that

1

2
tr |ρ̂sym0 − ρ̂sym1 | ≤ 2

√
Prsyminverted-INFO-basis

[
|CI| ≥

v̂

2
| iT, jT,b, s

]
. (7.23)

7.2.5 Bounding the Differences Between Eve’s States

So far, we have discussed a 1-bit key. We will now discuss a general m-bit key k. We

define ρ̂symk to be the state of Eve corresponding to the final key k, given that she knows

ξ:

ρ̂symk =
1

2n−r−m

∑
iI

∣∣iIPT
C = ξ

iIP
T
K = k

(ρiI)sym. (7.24)
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We note (for use in Subsection 7.2.6) that if we substitute (ρiI)sym from Equation (7.7),

we get

ρ̂symk =
1

2n−r−m

∑
iI,jI

∣∣iIPT
C = ξ

iIP
T
K = k

Prsym(jI | iI, iT, jT,b, s) ·
(
ρb,siI,jI

)sym
. (7.25)

Proposition 7.1. For any two keys k,k′ of m bits, and for any symmetrized attack,

1

2
tr |ρ̂symk − ρ̂symk′ | ≤ 2m

√
Prsyminverted-INFO-basis

[
|CI| ≥

v̂

2
| iT, jT,b, s

]
, (7.26)

where CI is the random variable whose value equals to cI , iI ⊕ jI, and, in addition,

v̂ , minr+1≤r′≤r+m dH(vr′ , V
exc
r′ ).

Proof. We define the key kj , for 0 ≤ j ≤ m, to consist of the first j bits of k′ and the

last m − j bits of k. This means that k0 = k, km = k′, and kj−1 differs from kj at

most on a single bit (the j-th bit).

First, we find a bound on 1
2 tr |ρ̂symkj−1

− ρ̂symkj
|: since kj−1 differs from kj at most on

a single bit (the j-th bit, given by the formula iI · vr+j), we can use the same proof that

gave us Equation (7.23), attaching the other (identical) key bits to ξ of the original

proof; and we find out that

1

2
tr |ρ̂symkj−1

− ρ̂symkj
| ≤ 2

√
Prsyminverted-INFO-basis

[
|CI| ≥

v̂j
2
| iT, jT,b, s

]
, (7.27)

where we define v̂j to be dH(vr+j , V
exc
r+j), and, therefore, v̂ = min1≤j′≤m v̂j′ .

In particular, v̂ ≤ v̂j . Therefore, if |CI| ≥ v̂j
2 , then |CI| ≥ v̂

2 . Therefore, Equa-

tion (7.27) implies

1

2
tr |ρ̂symkj−1

− ρ̂symkj
| ≤ 2

√
Prsyminverted-INFO-basis

[
|CI| ≥

v̂

2
| iT, jT,b, s

]
. (7.28)

Now we use the triangle inequality for norms to find

1

2
tr |ρ̂symk − ρ̂symk′ | =

1

2
tr |ρ̂symk0

− ρ̂symkm
| ≤

m∑
j=1

1

2
tr |ρ̂symkj−1

− ρ̂symkj
|

≤ 2m

√
Prsyminverted-INFO-basis

[
|CI| ≥

v̂

2
| iT, jT,b, s

]
. (7.29)

We would now like to bound the expected value (namely, the average value) of the

trace distance between two states of Eve corresponding to two final keys. However, we

should take into account that if the test fails, no final key is generated, in which case

we define the distance to be 0. We thus define the random variable ∆sym
Eve (k,k′) for any
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two final keys k,k′:

∆sym
Eve (k,k′ | iT, jT,b, s, ξ) ,

1
2 tr |ρ̂symk − ρ̂symk′ | if T (iT ⊕ jT,bT, s) = 1

0 otherwise
. (7.30)

We need to bound the expected value 〈∆sym
Eve (k,k′)〉, that is given by:

〈∆sym
Eve (k,k′)〉 =

∑
iT, jT ∈ FN−n2 ,

b ∈ B, s ∈ Sb, ξ ∈ Fn2

∆sym
Eve (k,k′ | iT, jT,b, s, ξ) · Prsym(iT, jT,b, s, ξ).

(7.31)

(In Subsection 7.2.6 we prove that this expected value is indeed the quantity we need to

bound for proving fully composable security, defined in Subsection 2.3.1.)

Theorem 7.2. For any two final keys k,k′,

〈∆sym
Eve (k,k′)〉 ≤ 2m

√
Prinverted-INFO-basis

[(
|CI|
n
≥ v̂

2n

)
∧ (T = 1)

]
, (7.32)

where |CI|
n is a random variable whose value is the error rate on the INFO bits, and

T is a random variable whose value is 1 if the test passes and 0 otherwise. We note

that the protocol considered for the probability in the right-hand-side is the hypothetical

“inverted-INFO-basis” protocol defined in Subsection 7.2.1, in which Alice and Bob use the

basis string b0 , b⊕ s instead of b. We note that the probability in the right-hand-side

is the probability for the original (non-symmetrized) attack.

Proof. We use the convexity of x2, namely, the fact that for all {pi}i satisfying pi ≥ 0

and
∑

i pi = 1, it holds that (
∑

i pixi)
2 ≤

∑
i pix

2
i . We also use the fact that

Prsyminverted-INFO-basis(iT, jT,b, s)

= Prsyminverted-INFO-basis(iT,b, s) · Prsyminverted-INFO-basis(jT | iT,b, s)

= Prsym(iT,b, s) · Prsym(jT | iT,b, s)

= Prsym(iT, jT,b, s), (7.33)

which is correct because iT,b, s are all chosen in the same way both in the hypothetical

“inverted-INFO-basis” protocol and in the real protocol (even though different basis

strings are used in these protocols), and because according to the third property of

the symmetrized attack (Equation (7.15)), Prsyminverted-INFO-basis(jT | iT,b, s) = Prsym(jT |
iT,b, s).
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In addition, we use the result

Prsyminverted-INFO-basis

[(
|CI| ≥

v̂

2

)
∧ (T = 1) | b, s

]
= Prinverted-INFO-basis

[(
|CI| ≥

v̂

2

)
∧ (T = 1) | b, s

]
, (7.34)

which is correct because according to the second property of the symmetrized attack

(Equation (7.13)), Prsyminverted-INFO-basis(cI, cT | b, s) = Prinverted-INFO-basis(cI, cT | b, s),

and because the random variable T depends only on the random variable CT and on

the parameters bT, s.

We also use the result

Prsyminverted-INFO-basis(b, s) = Prinverted-INFO-basis(b, s), (7.35)

which is correct because Alice’s random choice of b, s is independent of Eve’s attack.

We find out that:

〈∆sym
Eve (k,k′)〉2

=

 ∑
iT,jT,b,s,ξ

∆sym
Eve (k,k′ | iT, jT,b, s, ξ) · Prsym(iT, jT,b, s, ξ)

2

(by (7.31))

≤
∑

iT,jT,b,s,ξ

(
∆sym

Eve (k,k′ | iT, jT,b, s, ξ)
)2 · Prsym(iT, jT,b, s, ξ) (by convexity of x2)

=
∑

iT,jT,b,s,ξ|T=1

(
1
2 tr |ρ̂symk − ρ̂symk′ |

)2 · Prsym(iT, jT,b, s, ξ) (by (7.30))

≤ 4m2 ·
∑

iT,jT,b,s,ξ|T=1

Prsyminverted-INFO-basis

[
|CI| ≥ v̂

2 | iT, jT,b, s
]

· Prsym(iT, jT,b, s, ξ) (by (7.26))

= 4m2 ·
∑

iT,jT,b,s|T=1

Prsyminverted-INFO-basis

[
|CI| ≥ v̂

2 | iT, jT,b, s
]

· Prsym(iT, jT,b, s)

= 4m2 ·
∑

iT,jT,b,s

Prsyminverted-INFO-basis

[(
|CI| ≥ v̂

2

)
∧ (T = 1) | iT, jT,b, s

]
· Prsym(iT, jT,b, s)

= 4m2 ·
∑

iT,jT,b,s

Prsyminverted-INFO-basis

[(
|CI| ≥ v̂

2

)
∧ (T = 1) | iT, jT,b, s

]
· Prsyminverted-INFO-basis(iT, jT,b, s) (by (7.33))

= 4m2 ·
∑
b,s

Prsyminverted-INFO-basis

[(
|CI| ≥ v̂

2

)
∧ (T = 1) | b, s

]
· Prsyminverted-INFO-basis(b, s)
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= 4m2 ·
∑
b,s

Prinverted-INFO-basis

[(
|CI| ≥ v̂

2

)
∧ (T = 1) | b, s

]
· Prinverted-INFO-basis(b, s) (by (7.34)–(7.35))

= 4m2 · Prinverted-INFO-basis

[(
|CI| ≥ v̂

2

)
∧ (T = 1)

]
(7.36)

7.2.6 Bound for Fully Composable Security

We now prove a crucial part of the claim that generalized BB84 protocols satisfy

the definition of composable security for a QKD protocol: namely, that they satisfy

Equation (2.2) presented in Subsection 2.3.1. We derive an upper bound for the

expression 1
2 tr |ρABE − ρU ⊗ ρE|, where ρABE is the actual joint state of Alice, Bob,

and Eve at the end of the protocol; ρU is an ideal (random, secret, and shared) key

distributed to Alice and Bob; and ρE is the partial trace of ρABE over the system AB

(see Subsection 1.3.2). In other words, we upper-bound the trace distance between

the system after the real QKD protocol and the system after an ideal key distribution

protocol (which first performs the real QKD protocol and then magically distributes to

Alice and Bob a random, secret, and shared key).

The states ρABE and ρU are

ρABE =
∑

i,j,b,s|T=1

Pr (i, j,b, s) · |k〉A〈k| ⊗ |kB〉B〈kB|

⊗
(
ρb,siI,jI

)
E
⊗ |iT, jT,b, s, ξ〉C〈iT, jT,b, s, ξ|, (7.37)

ρU =
1

2m

∑
k

|k〉A〈k| ⊗ |k〉B〈k|, (7.38)

where
(
ρb,siI,jI

)
E

is defined in Equation (7.6) to be Eve’s quantum normalized state if

Alice sends the bit strings iI, iT,b, s and Bob measures the bit strings jI, jT. All the

other states actually represent classical information: subsystems A and B represent the

final keys held by Alice (k , iIP
T
K ) and Bob (his key kB is obtained from jI, ξ , iIP

T
C ,

and PK), and subsystem C represents the information published in the unjammable

classical channel during the protocol (this information is known to Alice, Bob, and

Eve)—namely, iT, jT (all the TEST bits), b (the basis string), s (the string representing

the partition into INFO and TEST bits), and ξ , iIP
T
C (the syndrome).

We note that in the definition of ρABE, we sum only over the events in which the test

is passed (namely, in which the protocol is not aborted by Alice and Bob): in such cases,

an m-bit key is generated. The cases in which the protocol aborts do not exist in the

sum—namely, they are represented by the zero operator, as required by the definition

of composable security (see [Ren08, Subsection 6.1.2]). Thus, ρABE is a non-normalized

state, and tr(ρABE) is the probability that the test is passed.
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To help us bound the trace distance, we define the following intermediate state:

σABE ,
∑

i,j,b,s|T=1

Pr (i, j,b, s) · |k〉A〈k| ⊗ |k〉B〈k|

⊗
(
ρb,siI,jI

)
E
⊗ |iT, jT,b, s, ξ〉C〈iT, jT,b, s, ξ|. (7.39)

This state is identical to ρABE, except that Bob holds Alice’s final key (k) instead of

his own calculated final key (kB). In particular, the similarity between ρABE and σABE

means, by definition, that ρE , trAB (ρABE) and σE , trAB (σABE) are the same state:

that is, ρE = σE.

Proposition 7.3. For any symmetrized attack, it holds that

1

2
tr
∣∣σsymABE − ρU ⊗ σ

sym
E

∣∣
≤ 2m

√
Prinverted-INFO-basis

[(
|CI|
n
≥ v̂

2n

)
∧ (T = 1)

]
, (7.40)

for σsymABE and ρU defined above (but for the symmetrized attack) and for the partial

trace σsymE , trAB

(
σsymABE

)
. We note that the probability in the right-hand-side is the

probability for the original (non-symmetrized) attack.

Proof. We notice that in σsymABE, the only factors depending directly on iI and jI (and not

only on k and ξ) are the probability Prsym (i, j,b, s) and Eve’s state
(
ρb,siI,jI

)sym
E

. The

probability can be reformulated as

Prsym (i, j,b, s) = Prsym (iT, jT,b, s, ξ) · Prsym (k | iT, jT,b, s, ξ)

· Prsym (iI | k, iT, jT,b, s, ξ) · Prsym (jI | iI,k, iT, jT,b, s, ξ)

= Prsym (iT, jT,b, s, ξ) · 1

2m
· 1

2n−r−m

· Prsym (jI | iI, iT, jT,b, s) . (7.41)

(This is correct because all the possible n-bit values of iI have the same probability, 1
2n ,

conditioned on iT, jT,b, s, according to the fourth property of the symmetrized attack

(Equation (7.16)); and because all the r+m rows of the matrices PC and PK are linearly

independent, so there are exactly 2n−r−m values of iI corresponding to each specific pair

(ξ,k).)

Therefore, the state σsymABE takes the following form:

σsymABE =
1

2m

∑
k,iT,jT,b,s,ξ|T=1

Prsym (iT, jT,b, s, ξ) · |k〉A〈k| ⊗ |k〉B〈k|
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⊗

 1

2n−r−m

∑
iI,jI

∣∣iIPT
C = ξ

iIP
T
K = k

Prsym (jI | iI, iT, jT,b, s) ·
(
ρb,siI,jI

)sym
E


⊗ |iT, jT,b, s, ξ〉C〈iT, jT,b, s, ξ|

=
1

2m

∑
k,iT,jT,b,s,ξ|T=1

Prsym (iT, jT,b, s, ξ) · |k〉A〈k| ⊗ |k〉B〈k|

⊗
(
ρ̂symk

)
E
⊗ |iT, jT,b, s, ξ〉C〈iT, jT,b, s, ξ|. (7.42)

(This expression for ρ̂symk was found in Equation (7.25).)

The partial trace σsymE , trAB

(
σsymABE

)
is

σsymE =
1

2m

∑
k,iT,jT,b,s,ξ|T=1

Prsym (iT, jT,b, s, ξ) ·
(
ρ̂symk

)
E
⊗|iT, jT,b, s, ξ〉C〈iT, jT,b, s, ξ|,

(7.43)

and the state ρU ⊗ σsymE is

ρU ⊗ σsymE =
1

22m

∑
k,k′,iT,jT,b,s,ξ|T=1

Prsym (iT, jT,b, s, ξ) · |k〉A〈k| ⊗ |k〉B〈k|

⊗
(
ρ̂symk′

)
E
⊗ |iT, jT,b, s, ξ〉C〈iT, jT,b, s, ξ|. (7.44)

Since σsymABE and ρU ⊗ σsymE are the same (except the difference between Eve’s states,(
ρ̂symk

)
E

and
(
ρ̂symk′

)
E

), we get, by using the triangle inequality for norms, the definition

of 〈∆sym
Eve (k,k′)〉 (Equation (7.31)), and Theorem 7.2:

1

2
tr
∣∣σsymABE − ρU ⊗ σ

sym
E

∣∣
≤ 1

22m

∑
k,k′,iT,jT,b,s,ξ|T=1

Prsym (iT, jT,b, s, ξ) · 1

2
tr
∣∣(ρ̂symk

)
E
−
(
ρ̂symk′

)
E

∣∣
=

1

22m

∑
k,k′

〈∆sym
Eve (k,k′)〉

≤ 2m

√
Prinverted-INFO-basis

[(
|CI|
n
≥ v̂

2n

)
∧ (T = 1)

]
. (7.45)

Proposition 7.4. For any attack, it holds that

1

2
tr |σABE − ρU ⊗ σE| ≤

1

2
tr
∣∣σsymABE − ρU ⊗ σ

sym
E

∣∣ , (7.46)

for σABE, σsymABE, and ρU defined above and for the partial traces σE , trAB (σABE) and

σsymE , trAB

(
σsymABE

)
.

Proof. First, we have to find an expression for
(
ρb,siI,jI

)sym
E

. According to Equation (7.6),
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(
ρb,siI,jI

)sym
E

=

[
|Esym

i,j
′〉b〈Esym

i,j
′|
]
E

Prsym(j | i,b, s)
, (7.47)

and according to the “Basic Lemma of Symmetrization” (see Equation (7.11)),

|Esym
i,j
′〉b =

1√
2N

∑
m∈FN2

(−1)(i⊕j)·m|E′i⊕m,j⊕m〉b|m〉M. (7.48)

Therefore,

(
ρb,siI,jI

)sym
E

=
1

2N

∑
m,m′∈FN2

(−1)(i⊕j)·(m⊕m
′)
[
|E′i⊕m,j⊕m〉b〈E′i⊕m′,j⊕m′ | ⊗ |m〉M〈m′|

]
E

Prsym(j | i,b, s)
.

(7.49)

The state σsymABE now takes the following form:

σsymABE =
1

2N

∑
i,j,b,s,m,m′|T=1

Prsym (i, j,b, s) · |k〉A〈k| ⊗ |k〉B〈k|

⊗
(−1)(i⊕j)·(m⊕m

′)
[
|E′i⊕m,j⊕m〉b〈E′i⊕m′,j⊕m′ | ⊗ |m〉M〈m′|

]
E

Prsym(j | i,b, s)

⊗ |iT, jT,b, s, ξ〉C〈iT, jT,b, s, ξ|

=
1

2N

∑
i,j,b,s,m,m′|T=1

Prsym (i,b, s) · |k〉A〈k| ⊗ |k〉B〈k|

⊗ (−1)(i⊕j)·(m⊕m
′)
[
|E′i⊕m,j⊕m〉b〈E′i⊕m′,j⊕m′ | ⊗ |m〉M〈m′|

]
E

⊗ |iT, jT,b, s, ξ〉C〈iT, jT,b, s, ξ|. (7.50)

We define a unitary operator V : given the state |m〉M (held by Eve), the unitary

operator V takes a XOR of all the states in the subsystems A, B, and C with the

relevant parts of m. Namely, if we define mI and mT as the INFO bits and the TEST

bits (respectively) of m (of course, they depend on s), and if we define km , mIP
T
K

and ξm , mIP
T
C , then

V |k〉A|k〉B [|E〉|m〉M]E |iT, jT,b, s, ξ〉C
= |k⊕ km〉A|k⊕ km〉B [|E〉|m〉M]E

|iT ⊕mT, jT ⊕mT,b, s, ξ ⊕ ξm〉C. (7.51)

Therefore (also using the fact that Prsym (i,b, s) = Pr (i,b, s) = Pr (i⊕m,b, s)),

V σsymABEV
† =

1

2N

∑
i,j,b,s,m,m′|T=1

Pr (i⊕m,b, s) · |k⊕ km〉A〈k⊕ km′ | ⊗ |k⊕ km〉B〈k⊕ km′ |

⊗ (−1)(i⊕j)·(m⊕m
′)
[
|E′i⊕m,j⊕m〉b〈E′i⊕m′,j⊕m′ | ⊗ |m〉M〈m′|

]
E

⊗ |iT ⊕mT, jT ⊕mT,b, s, ξ ⊕ ξm〉C〈iT ⊕m′T, jT ⊕m′T,b, s, ξ ⊕ ξm′ |. (7.52)
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Tracing out the subsystem M (which is a part of Eve’s probe), we get

trM

[
V σsymABEV

†
]

=
1

2N

∑
i,j,b,s,m|T=1

Pr (i⊕m,b, s) · |k⊕ km〉A〈k⊕ km| ⊗ |k⊕ km〉B〈k⊕ km|

⊗
[
|E′i⊕m,j⊕m〉b〈E′i⊕m,j⊕m|

]
E

⊗ |iT ⊕mT, jT ⊕mT,b, s, ξ ⊕ ξm〉C〈iT ⊕mT, jT ⊕mT,b, s, ξ ⊕ ξm|.(7.53)

Now we can change the indexes of the sum, in the following way: we denote i′ , i⊕m

and j′ , j⊕m (for a fixed m), and we immediately get, according to the definitions,

the results i′T = iT ⊕mT, j′T = jT ⊕mT, k′ , i′IP
T
K = (iI ⊕mI)P

T
K = k ⊕ km, and

similarly ξ′ , i′IP
T
C = ξ⊕ ξm. We also notice that T gets (iT⊕ jT,bT, s) as inputs, and

that they all stay the same (because i′T ⊕ j′T = (iT ⊕mT)⊕ (jT ⊕mT) = iT ⊕ jT), and

therefore the change of indexes does not impact the condition T = 1. Therefore,

trM

[
V σsymABEV

†
]

=
1

2N

∑
i′,j′,b,s,m|T=1

Pr
(
i′,b, s

)
· |k′〉A〈k′| ⊗ |k′〉B〈k′|

⊗
[
|E′i′,j′〉b〈E′i′,j′ |

]
E

⊗ |i′T, j′T,b, s, ξ′〉C〈i′T, j′T,b, s, ξ′|. (7.54)

Using the relation
(
ρb,siI,jI

)
E

=
[|E′i,j〉b〈E

′
i,j|]E

Pr(j|i,b,s) from Equation (7.6), we get

trM

[
V σsymABEV

†
]

=
∑

i′,j′,b,s|T=1

Pr
(
i′,b, s

)
· |k′〉A〈k′| ⊗ |k′〉B〈k′|

⊗ Pr(j′ | i′,b, s)
(
ρb,s
i′I,j
′
I

)
E

⊗ |i′T, j′T,b, s, ξ′〉C〈i′T, j′T,b, s, ξ′|

=
∑

i′,j′,b,s|T=1

Pr
(
i′, j′,b, s

)
· |k′〉A〈k′| ⊗ |k′〉B〈k′|

⊗
(
ρb,s
i′I,j
′
I

)
E
⊗ |i′T, j′T,b, s, ξ′〉C〈i′T, j′T,b, s, ξ′|

= σABE. (7.55)

To sum up, we get the result σABE = trM
[
V σsymABEV

†]. A very similar proof gives

us the result ρU ⊗ σE = trM
[
V
(
ρU ⊗ σsymE

)
V †
]
. Since the trace distance is preserved

under unitary operators and does not increase under partial trace, we get

1

2
tr |σABE − ρU ⊗ σE| =

1

2
tr
∣∣∣trM [V (σsymABE − ρU ⊗ σ

sym
E

)
V †
]∣∣∣

≤ 1

2
tr
∣∣∣V (σsymABE − ρU ⊗ σ

sym
E

)
V †
∣∣∣

=
1

2
tr
∣∣σsymABE − ρU ⊗ σ

sym
E

∣∣ . (7.56)
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Proposition 7.5. For any attack,

1

2
tr |ρABE − σABE| ≤ Pr

[(
k 6= kB

)
∧ (T = 1)

]
, (7.57)

for ρABE and σABE defined above, and for k being the final key computed by Alice and

kB being the final key computed by Bob.

Proof.

ρABE − σABE =
∑

i,j,b,s|T=1

Pr (i, j,b, s)

· |k〉A〈k| ⊗
[
|kB〉B〈kB| − |k〉B〈k|

]
⊗

(
ρb,siI,jI

)
E
⊗ |iT, jT,b, s, ξ〉C〈iT, jT,b, s, ξ|

= Pr
[(

k 6= kB
)
∧ (T = 1)

]
·

∑
i,j,b,s

Pr
[
i, j,b, s |

(
k 6= kB

)
∧ (T = 1)

]
· |k〉A〈k| ⊗

[
|kB〉B〈kB| − |k〉B〈k|

]
⊗

(
ρb,siI,jI

)
E
⊗ |iT, jT,b, s, ξ〉C〈iT, jT,b, s, ξ|. (7.58)

The trace distance between any two normalized states is bounded by 1. Therefore,

1

2
tr |ρABE − σABE| ≤ Pr

[(
k 6= kB

)
∧ (T = 1)

]
. (7.59)

Corollary 7.6. For any attack,

1

2
tr |ρABE − ρU ⊗ ρE|

≤ Pr
[(

k 6= kB
)
∧ (T = 1)

]
+ 2m

√
Prinverted-INFO-basis

[(
|CI|
n ≥

v̂
2n

)
∧ (T = 1)

]
, (7.60)

for ρABE and ρU defined above and for the partial trace ρE , trAB (ρABE).

Proof. Using Propositions 7.3, 7.4, and 7.5, and also the fact that ρE = σE, we get:

1

2
tr |ρABE − ρU ⊗ ρE|

≤ 1

2
tr |ρABE − σABE|+

1

2
tr |σABE − ρU ⊗ σE|

≤ 1

2
tr |ρABE − σABE|+

1

2
tr
∣∣σsymABE − ρU ⊗ σ

sym
E

∣∣
≤ Pr

[(
k 6= kB

)
∧ (T = 1)

]
+ 2m

√
Prinverted-INFO-basis

[(
|CI|
n ≥

v̂
2n

)
∧ (T = 1)

]
. (7.61)
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We have thus found an upper bound for the expression 1
2 tr |ρABE − ρU ⊗ ρE|. In

Section 7.3 we prove this upper bound to be exponentially small in n for specific

protocols.

7.3 Full Security Proofs for Specific Protocols

Below we prove full security for specific important examples of generalized BB84

protocols.

In this section we use Hoeffding’s theorem, as described in Section 2.6; in particular,

we use Corollary 2.2.

7.3.1 The BB84-INFO-z Protocol

In the BB84-INFO-z protocol, all the INFO bits are sent by Alice in the z basis, while

the TEST bits are sent in both the z and the x bases. This means that b and s together

define a random partition of the set of indexes {1, 2, . . . , N} into three disjoint sets:

• I (INFO bits, where sj = 1 and bj = 0) of size n;

• TZ (TEST-Z bits, where sj = 0 and bj = 0) of size nz; and

• TX (TEST-X bits, where sj = 0 and bj = 1) of size nx.

Formally, Alice and Bob agree on parameters n, nz, nx (such that N = n+ nz + nx),

and we choose B = {b ∈ FN
2 | |b| = nx} and Sb = {s ∈ FN

2 | (|s| = n) ∧ (|s ⊕ b| =

n + nx)} (namely, s ∈ Sb if it consists of n 1-bits that do not overlap with the nx

1-bits of b) for all b ∈ B. The probability distributions Pr(b) and Pr(s | b) are all

uniform—namely, Pr(b, s) is identical for all b ∈ B and s ∈ Sb.

Alice and Bob also agree on error rate thresholds, pa,z and pa,x (for the TEST-Z

and TEST-X bits, respectively). The testing function T is defined as follows:

T (iT ⊕ jT,bT, s) = 1 ⇔ (|iTZ
⊕ jTZ

| ≤ nz · pa,z) ∧ (|iTX
⊕ jTX

| ≤ nx · pa,x) . (7.62)

Namely, the test passes if and only if the error rate on the TEST-Z bits is at most pa,z

and the error rate on the TEST-X bits is at most pa,x.

Following Corollary 7.6, we know the following bound:

1

2
tr |ρABE − ρU ⊗ ρE|

≤ Pr
[(

k 6= kB
)
∧ (T = 1)

]
+ 2m

√
Prinverted-INFO-basis

[(
|CI|
n ≥

v̂
2n

)
∧ (T = 1)

]
. (7.63)

Below we prove the two probabilities in the right-hand-side to be exponentially small in

n:
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Theorem 7.7. Let us be given δsec > 0, and, for infinitely many values of n, a family

{vn1 , . . . , vnrn+mn} of linearly independent vectors in Fn
2 such that δsec <

v̂
n . Then for

any pa,z, pa,x > 0 and εsec > 0 such that pa,x + εsec ≤ δsec
2 , and for any nz, nx > 0, it

holds for the BB84-INFO-z protocol that

Prinverted-INFO-basis

[(
|CI|
n
≥ v̂

2n

)
∧ (T = 1)

]
≤ e−2

(
nx

n+nx

)2
nε2sec . (7.64)

Proof. Because v̂
2n >

δsec
2 ≥ pa,x + εsec, it holds that

Prinverted-INFO-basis

[(
|CI|
n
≥ v̂

2n

)
∧ (T = 1)

]
= Prinverted-INFO-basis

[(
|CI|
n
≥ v̂

2n

)
∧
(
|CTZ

|
nz

≤ pa,z
)
∧
(
|CTX

|
nx

≤ pa,x
)]

≤ Prinverted-INFO-basis

[(
|CI|
n

> pa,x + εsec

)
∧
(
|CTX

|
nx

≤ pa,x
)]

. (7.65)

In the hypothetical “inverted-INFO-basis” protocol, the INFO and TEST-X bits

are sent and measured in the x basis, while the TEST-Z bits are sent and measured in

the z basis. Therefore, the random and uniform sampling of the n INFO bits out of

the n+ nx bits sent in the x basis (assuming that the TEST-Z bits have already been

chosen) does not affect the bases in the hypothetical protocol. This means that we can

apply Corollary 2.2 to this sampling, and we get

Prinverted-INFO-basis

[(
|CI|
n

> pa,x + εsec

)
∧
(
|CTX

|
nx

≤ pa,x
)]
≤ e−2

(
nx

n+nx

)2
nε2sec .

(7.66)

Theorem 7.8. Let us be given δrel > 0, and, for infinitely many values of n, a family

{vn1 , . . . , vnrn+mn} of linearly independent vectors in Fn
2 such that the parity-check matrix

PC, whose rows are {vn1 , . . . , vnrn}, defines an error-correcting code that can correct up

to n · δrel errors on an n-bit string. Then for any pa,z, pa,x > 0 and εrel > 0 such that

pa,z + εrel ≤ δrel, and for any nz, nx > 0, it holds for the BB84-INFO-z protocol that

Pr
[(

k 6= kB
)
∧ (T = 1)

]
≤ e−2

(
nz

n+nz

)2
nε2rel . (7.67)

Proof. If k 6= kB, Alice and Bob have different final keys, and this means that the error

correction stage did not succeed. The error-correcting code can correct up to n · δrel
errors, and, therefore, it can correct up to n · (pa,z + εrel) errors (since pa,z + εrel ≤ δrel).
Therefore, a failure of the error correction stage must mean that there are more than

n·(pa,z+εrel) errors in the INFO bits: namely, if k 6= kB, then necessarily |CI|
n > pa,z+εrel.
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Therefore,

Pr
[(

k 6= kB
)
∧ (T = 1)

]
= Pr

[(
k 6= kB

)
∧
(
|CTZ

|
nz

≤ pa,z
)
∧
(
|CTX

|
nx

≤ pa,x
)]

≤ Pr

[(
|CI|
n

> pa,z + εrel

)
∧
(
|CTZ

|
nz

≤ pa,z
)]

. (7.68)

In the real protocol, the INFO and TEST-Z bits are sent and measured in the z

basis, while the TEST-X bits are sent and measured in the x basis. Therefore, the

random and uniform sampling of the n INFO bits out of the n+ nz bits sent in the z

basis (assuming that the TEST-X bits have already been chosen) does not affect the

bases in the real protocol. This means that we can apply Corollary 2.2 to this sampling,

and we get

Pr

[(
|CI|
n

> pa,z + εrel

)
∧
(
|CTZ

|
nz

≤ pa,z
)]
≤ e−2

(
nz

n+nz

)2
nε2rel . (7.69)

If we combine the conditions and the results of Corollary 7.6, Theorem 7.7, and

Theorem 7.8, we get the following result:

Corollary 7.9. Let us be given δsec > 0, δrel > 0, and, for infinitely many values of

n, a family {vn1 , . . . , vnrn+mn} of linearly independent vectors in Fn
2 such that δsec <

v̂
n

and such that the parity-check matrix PC, whose rows are {vn1 , . . . , vnrn}, defines an

error-correcting code that can correct up to n · δrel errors on an n-bit string. Then for

any pa,z, pa,x > 0 and εsec, εrel > 0 such that pa,x + εsec ≤ δsec
2 and pa,z + εrel ≤ δrel, and

for any nz, nx > 0, it holds for the BB84-INFO-z protocol that

1

2
tr |ρABE − ρU ⊗ ρE| ≤ e

−2
(

nz
n+nz

)2
nε2rel + 2mne

−
(

nx
n+nx

)2
nε2sec . (7.70)

This bound is exponentially small in n.

All that is left to be explained is why the vectors required by Corollary 7.9 exist.

We need a family of vectors {vn1 , . . . , vnrn+mn} satisfying both the condition v̂
2n >

δsec
2 ≥

pa,x+ εsec and the ability to correct up to n(pa,z + εrel) errors. Such families were proven

to exist in Appendix E of [BBBMR06], giving the following upper bound on the bit-rate:

Rsecret ,
mn

n
< 1−H2(2pa,x + 2εsec)−H2

(
pa,z + εrel +

1

n

)
, (7.71)

where H2(x) , −x log2(x)− (1− x) log2(1− x).

Note that we use here the error thresholds pa,x for the condition on v̂ and pa,z for

error correction. This is possible, because in [BBBMR06] these conditions on the codes

are discussed separately.
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(0.0756, 0.0756)

Figure 7.1: The secure asymptotic error rates zone for BB84-INFO-z (below
the curve)

To get the asymptotic error rate thresholds, we require Rsecret > 0, and we get the

condition

H2(2pa,x + 2εsec) +H2

(
pa,z + εrel +

1

n

)
< 1. (7.72)

The secure asymptotic error rate thresholds zone is shown in Figure 7.1 (it is below

the curve), assuming that 1
n is negligible. Note the trade-off between the error rate

thresholds pa,z and pa,x. Also note that in the case of pa,z = pa,x, we get the same

threshold as in similar security proofs of BB84 [BBBMR06, BGM09], which is 7.56%.

7.3.2 The Standard BB84 Protocol

In the standard BB84 protocol, the strings b and s are chosen randomly (except that

we demand |s| = n) and independently, and N = 2n. In other words, there are n INFO

bits and n TEST bits (chosen randomly), and for each one of them, the basis (z or x)

is chosen randomly and independently.

Formally, in BB84, we choose N = 2n, B = FN
2 , and Sb = {s ∈ FN

2 | |s| = n}
for all b ∈ B. The probability distributions Pr(b) and Pr(s | b) = Pr(s) are all

uniform—namely, Pr(b, s) is identical for all b ∈ B and s ∈ Sb.

Given the parameter pa agreed by Alice and Bob, the testing function T is

T (iT ⊕ jT,bT, s) = 1 ⇔ |iT ⊕ jT| ≤ n · pa. (7.73)

Namely, the test passes if and only if the error rate on the TEST bits is at most pa.
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Proposition 7.10. In the standard BB84 protocol,

Prinverted-INFO-basis

[(
|CI|
n
≥ v̂

2n

)
∧ (T = 1)

]
= Pr

[(
|CI|
n
≥ v̂

2n

)
∧ (T = 1)

]
.

(7.74)

Proof.

Prinverted-INFO-basis

[(
|CI|
n
≥ v̂

2n

)
∧ (T = 1)

]
=

∑
b,s

Prinverted-INFO-basis

[(
|CI|
n
≥ v̂

2n

)
∧ (T = 1) | b, s

]
· Pr(b, s)

=
∑
b,s

Pr

[(
|CI|
n
≥ v̂

2n

)
∧ (T = 1) | b0, s

]
· Pr(b0, s)

= Pr

[(
|CI|
n
≥ v̂

2n

)
∧ (T = 1)

]
(7.75)

(where b0 , b⊕ s).

The security of the standard BB84 protocol is now easily obtained:

Theorem 7.11. Let us be given δsec > 0, δrel > 0, and, for infinitely many values of

n, a family {vn1 , . . . , vnrn+mn} of linearly independent vectors in Fn
2 such that δsec <

v̂
n

and such that the parity-check matrix PC, whose rows are {vn1 , . . . , vnrn}, defines an

error-correcting code that can correct up to n · δrel errors on an n-bit string. Then for

any pa > 0 and εsec, εrel > 0 such that pa + εsec ≤ δsec
2 and pa + εrel ≤ δrel, it holds for

the standard BB84 protocol that

1

2
tr |ρABE − ρU ⊗ ρE| ≤ e−

1
2
nε2rel + 2mne

− 1
4
nε2sec . (7.76)

Proof. By using Corollary 7.6 and Proposition 7.10, we get the following bound for

BB84:

1

2
tr |ρABE − ρU ⊗ ρE|

≤ Pr
[(

k 6= kB
)
∧ (T = 1)

]
+ 2mn

√
Pr

[(
|CI|
n
≥ v̂

2n

)
∧ (T = 1)

]
= Pr

[(
k 6= kB

)
∧
(
|CT|
n
≤ pa

)]
+ 2mn

√
Pr

[(
|CI|
n
≥ v̂

2n

)
∧
(
|CT|
n
≤ pa

)]
. (7.77)

Because v̂
2n >

δsec
2 ≥ pa + εsec, and also because the event k 6= kB implies that the
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error rate on the INFO bits is higher than δrel ≥ pa + εrel, we get:

Pr

[(
k 6= kB

)
∧
(
|CT|
n
≤ pa

)]
+ 2mn

√
Pr

[(
|CI|
n
≥ v̂

2n

)
∧
(
|CT|
n
≤ pa

)]
≤ Pr

[(
|CI|
n

> pa + εrel

)
∧
(
|CT|
n
≤ pa

)]
+ 2mn

√
Pr

[(
|CI|
n

> pa + εsec

)
∧
(
|CT|
n
≤ pa

)]
. (7.78)

All the bits in the protocol are sent in random and independent bases. Therefore,

the random and uniform sampling of the n INFO bits out of the N = 2n bits does not

affect the bases (in the real protocol). This means that we can apply Corollary 2.2 to

this sampling, and we get

Pr

[(
|CI|
n

> pa + εrel

)
∧
(
|CT|
n
≤ pa

)]
≤ e−

1
2
nε2rel , (7.79)

Pr

[(
|CI|
n

> pa + εsec

)
∧
(
|CT|
n
≤ pa

)]
≤ e−

1
2
nε2sec . (7.80)

Combining Equations (7.77)–(7.80), we get

1

2
tr |ρABE − ρU ⊗ ρE| ≤ e−

1
2
nε2rel + 2mne

− 1
4
nε2sec . (7.81)

In Appendix E of [BBBMR06] we get the following results on vector families satisfying

the requirements of Theorem 7.11: the bit-rate satisfies

Rsecret ,
mn

n
< 1−H2(2pa + 2εsec)−H2

(
pa + εrel +

1

n

)
, (7.82)

and the condition on the asymptotic error rate threshold is

H2(2pa + 2εsec) +H2

(
pa + εrel +

1

n

)
< 1. (7.83)

This gives an asymptotic error rate threshold of 7.56%.

7.3.3 The “Efficient BB84” Protocol

In the “efficient BB84” protocol (suggested by [LCA05]), the bit string b is chosen

probabilistically, but not uniformly : each qubit is sent in the z basis with probability p

(and in the x basis with probability 1− p), where 0 < p ≤ 1
2 . Then, the bit string s is

chosen such that there are nz TEST-Z bits and nx TEST-X bits. In other words, as

in BB84-INFO-z, the strings b and s together define a random partition of the set of
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indexes {1, 2, . . . , N} into three disjoint sets:

• I (INFO bits, where sj = 1) of size n. However, unlike BB84-INFO-z, this set

consists of both z qubits and x qubits; therefore, it can be divided to two disjoint

subsets:

– IZ (INFO-Z bits, where sj = 1 and bj = 0); and

– IX (INFO-X bits, where sj = 1 and bj = 1).

• TZ (TEST-Z bits, where sj = 0 and bj = 0) of size nz; and

• TX (TEST-X bits, where sj = 0 and bj = 1) of size nx.

Formally, in “efficient BB84”, Alice and Bob agree on parameters n, nz, nx (such

that N = n + nz + nx) and on a parameter 0 < p ≤ 1
2 , and we choose B = FN

2 and

Sb = {s ∈ FN
2 | (|s| = n)∧ (|s∧b| = nx)} for all b ∈ B (namely, it is required that there

are n INFO bits, nz TEST-Z bits, and nx TEST-X bits). This time, the probability

distribution Pr(b) is not uniform: it holds that Pr(b) = (1− p)|b| · pN−|b|, because the

probability of each bit to be in the x basis is 1− p. On the other hand, the probability

distribution Pr(s | b) is uniform.

Remark. A subtle point is that for some values b ∈ FN
2 (for example, for b = 00 . . . 0),

the set Sb is empty: no s can be agreed by Alice and Bob for such values of b. In that

case, as assumed in [LCA05, Section 4.3], the protocol aborts, and other values of b

and s are randomly chosen; this is equivalent to assuming Alice is not allowed to choose

these values of b. Therefore, to be more precise, we must re-define

B = {b ∈ FN
2 | Sb 6= ∅} = {b ∈ FN

2 | (|b| ≥ nx) ∧ (|b| ≥ nz)}, (7.84)

and we must normalize the probabilities by defining Pr0(b) , (1 − p)|b| · pN−|b| (the

original probability of each b), Np ,
∑

b∈B Pr0(b) (the sum of all the original probabil-

ities for all the allowed values of b ∈ B), and then the real probability of each b ∈ B is

Pr(b) =
Pr0(b)

Np
=

(1− p)|b| · pN−|b|

Np
. (7.85)

This guarantees that the sum of probabilities of all the allowed values b ∈ B is 1.

Alice and Bob also agree on an error rate threshold, pa (applied both to the TEST-Z

bits and to the TEST-X bits). The testing function T is defined as follows:

T (iT ⊕ jT,bT, s) = 1 ⇔ (|iTZ
⊕ jTZ

| ≤ nz · pa) ∧ (|iTX
⊕ jTX

| ≤ nx · pa) . (7.86)

Namely, the test passes if and only if the error rate on the TEST-Z bits is at most pa

and the error rate on the TEST-X bits is at most pa.

In this security proof, instead of analyzing all the INFO bits together, we analyze

the INFO-Z and the INFO-X bits separately. We define the following random variables:
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• CIZ and CIX are the random variables corresponding to the error strings on the

INFO-Z bits and on the INFO-X bits, respectively.

• NIZ and NIX are random variables equal to the numbers of INFO-Z and INFO-X

bits, respectively. (We note that the parameters n, nz, nx are deterministically

chosen by Alice and Bob, while NIZ and NIX are determined by the probabilistic

choice of b. We also note that, necessarily, n = NIZ +NIX .)

Proposition 7.12. For any ε > 0,

Pr

[(
|CI|
n

> pa + ε

)
∧ (T = 1)

]
≤ Pr

[(
|CIZ |
NIZ

> pa + ε

)
∧ (T = 1)

]
+ Pr

[(
|CIX |
NIX

> pa + ε

)
∧ (T = 1)

]
. (7.87)

Equation (7.87) similarly applies to the hypothetical “inverted-INFO-basis” protocol,

too (namely, it applies even if Pr is replaced by Prinverted-INFO-basis).

Proof. We observe that if the error rate on all the INFO bits together is larger than

pa + ε, then at least one of the error rates (on the INFO-Z bits or on the INFO-X bits)

must be larger than pa + ε. (Equivalently, if both error rates on the INFO-Z bits and

on the INFO-X bits are less than pa + ε, then the error rate on the INFO bits is less

than pa + ε.) Namely,(
|CI|
n

> pa + ε

)
⇒

(
|CIZ |
NIZ

> pa + ε

)
∨
(
|CIX |
NIX

> pa + ε

)
. (7.88)

In particular, the corresponding probabilities satisfy

Pr

[(
|CI|
n

> pa + ε

)
∧ (T = 1)

]
≤ Pr

[(
|CIZ |
NIZ

> pa + ε

)
∧ (T = 1)

]
+ Pr

[(
|CIX |
NIX

> pa + ε

)
∧ (T = 1)

]
. (7.89)

This result applies both to the real protocol and to the hypothetical “inverted-INFO-basis”

protocol.

Proposition 7.13. For any ε > 0 and δ > 0,

Pr

[(
|CIZ |
NIZ

> pa + ε

)
∧ (T = 1)

]
≤ Pr (NIZ ≤ δ)

+ max
δ≤tz≤n

Pr

[(
|CIZ |
tz

> pa + ε

)
∧ (T = 1) | NIZ = tz

]
, (7.90)
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and

Pr

[(
|CIX |
NIX

> pa + ε

)
∧ (T = 1)

]
≤ Pr (NIX ≤ δ)

+ max
δ≤tx≤n

Pr

[(
|CIX |
tx

> pa + ε

)
∧ (T = 1) | NIX = tx

]
. (7.91)

Equations (7.90)–(7.91) similarly apply to the hypothetical “inverted-INFO-basis”

protocol, too (namely, they apply even if Pr is replaced by Prinverted-INFO-basis).

Proof. First, we prove Equation (7.90):

Pr

[(
|CIZ |
NIZ

> pa + ε

)
∧ (T = 1)

]
=

∑
tz

Pr

[(
|CIZ |
tz

> pa + ε

)
∧ (T = 1) | NIZ = tz

]
· Pr (NIZ = tz)

=
∑
tz<δ

Pr

[(
|CIZ |
tz

> pa + ε

)
∧ (T = 1) | NIZ = tz

]
· Pr (NIZ = tz)

+
∑

δ≤tz≤n
Pr

[(
|CIZ |
tz

> pa + ε

)
∧ (T = 1) | NIZ = tz

]
· Pr (NIZ = tz)

≤
∑
tz≤δ

Pr (NIZ = tz)

+ max
δ≤tz≤n

Pr

[(
|CIZ |
tz

> pa + ε

)
∧ (T = 1) | NIZ = tz

]
·
∑

δ≤tz≤n
Pr (NIZ = tz)

≤ Pr (NIZ ≤ δ) + max
δ≤tz≤n

Pr

[(
|CIZ |
tz

> pa + ε

)
∧ (T = 1) | NIZ = tz

]
. (7.92)

The proof of Equation (7.91) is similar. Both proofs apply both to the real protocol

and to the “inverted-INFO-basis” protocol.

Theorem 7.14. Let us be given δsec > 0, δrel > 0, and, for infinitely many values of

n, a family {vn1 , . . . , vnrn+mn} of linearly independent vectors in Fn
2 such that δsec <

v̂
n

and such that the parity-check matrix PC, whose rows are {vn1 , . . . , vnrn}, defines an

error-correcting code that can correct up to n · δrel errors on an n-bit string. Then for

any pa > 0 and εsec, εrel > 0 such that pa + εsec ≤ δsec
2 and pa + εrel ≤ δrel, for any

0 < p ≤ 1
2 , and for any 0 < nz <

pN
2 and 0 < nx <

(1−p)N
2 , it holds for the “efficient

BB84” protocol that

1

2
tr |ρABE − ρU ⊗ ρE| ≤ e−

1
2
Np2 + e

−2
(

nz
n+nz

)2
( pN2 −nz)ε

2
rel

+ e−
1
2
N(1−p)2 + e

−2
(

nx
n+nx

)2( (1−p)N
2
−nx

)
ε2rel
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+ 2mn

√
e−

1
2
Np2 + e

−2
(

nx
n+nx

)2
( pN2 −nz)ε2sec+

e−
1
2
N(1−p)2 + e

−2
(

nz
n+nz

)2( (1−p)N
2
−nx

)
ε2sec . (7.93)

Proof. By using Corollary 7.6 and Proposition 7.12, we get the following bound:

1

2
tr |ρABE − ρU ⊗ ρE|

≤ Pr
[(

k 6= kB
)
∧ (T = 1)

]
+ 2mn

√
Prinverted-INFO-basis

[(
|CI|
n
≥ v̂

2n

)
∧ (T = 1)

]
≤ Pr

[(
|CI|
n

> pa + εrel

)
∧ (T = 1)
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Proposition 7.13 and the definition of T give us the following bounds:
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]
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≤ Prinverted-INFO-basis

(
NIX ≤

(1− p)N
2

− nx
)
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For each one of Equations (7.95)–(7.98), we need to upper-bound two probabilities.

For bounding the first set of probabilities, we use the results of Corollary 2.4:

Pr

(
|b| ≤ (1− p)N

2

)
≤ e−

1
2
N(1−p)2 , (7.99)

Pr

(
|b| ≤ pN

2

)
≤ e−

1
2
Np2 . (7.100)

We notice that |b| = NIX + nx and |b| = NIZ + nz; therefore,

Pr

(
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2

− nx
)
≤ e−

1
2
N(1−p)2 , (7.101)

Pr
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2
− nz

)
≤ e−

1
2
Np2 , (7.102)

Prinverted-INFO-basis

(
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(1− p)N
2

− nx
)
≤ e−

1
2
N(1−p)2 , (7.103)

Prinverted-INFO-basis

(
NIZ ≤

pN

2
− nz

)
≤ e−

1
2
Np2 . (7.104)

For bounding the second set of probabilities, given specific values of NIZ = tz and

NIX = tx, we use Corollary 2.2:

In the real protocol, the INFO-Z and TEST-Z bits are sent and measured in the

z basis, while the INFO-X and TEST-X bits are sent and measured in the x basis.

Therefore, the random and uniform sampling of the tz INFO-Z bits out of the tz + nz

bits sent in the z basis (assuming that the INFO-X and TEST-X bits have already been

chosen) does not affect the bases in the real protocol; similarly, the random and uniform

sampling of the tx INFO-X bits out of the tx + nx bits sent in the x basis (assuming

that the INFO-Z and TEST-Z bits have already been chosen) does not affect the bases

in the real protocol. We note that these samplings are uniform, because the probability

Pr(s | b) is uniform for all the allowed values of b and s. This means that we can apply

Corollary 2.2 to both of these samplings, and we get
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tz

> pa + εrel

)
∧
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|
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)
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]
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Maximizing over tz and tx, we get:

max
pN
2
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Pr
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In the hypothetical “inverted-INFO-basis” protocol, the INFO-X and TEST-Z bits

are sent and measured in the z basis, while the INFO-Z and TEST-X bits are sent

and measured in the x basis. Therefore, the random and uniform sampling of the tx

INFO-X bits out of the tx + nz bits sent in the z basis (assuming that the INFO-Z and

TEST-X bits have already been chosen) does not affect the bases in the hypothetical

protocol; similarly, the random and uniform sampling of the tz INFO-Z bits out of the

tz + nx bits sent in the x basis (assuming that the INFO-X and TEST-Z bits have

already been chosen) does not affect the bases in the hypothetical protocol. We note

that these samplings are uniform, because the probability Pr(b) depends only on |b|
and is invariant to permutations. This means that we can apply Corollary 2.2 to both

of these samplings, and we get

Prinverted-INFO-basis

[(
|CIZ |
tz

> pa + εsec

)
∧
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|
nx

≤ pa
)
| NIZ = tz

]
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)2
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Prinverted-INFO-basis
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Maximizing over tz and tx, we get:
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To sum up, we get the following bound:

1

2
tr |ρABE − ρU ⊗ ρE|
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+ 2mn
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Similarly to the standard BB84, we get the following results on vector families

satisfying the requirements of Theorem 7.14: the bit-rate satisfies

Rsecret ,
mn

n
< 1−H2(2pa + 2εsec)−H2

(
pa + εrel +

1

n

)
, (7.114)

and the condition on the asymptotic error rate threshold is

H2(2pa + 2εsec) +H2

(
pa + εrel +

1

n

)
< 1. (7.115)

This gives an asymptotic error rate threshold of 7.56%.

7.3.4 The “Modified Efficient BB84” Protocol

A relatively minor property of the definition of the “efficient BB84” protocol in [LCA05]

(and in Subsection 7.3.3) makes both the security bound and the security proof pretty

complicated. In this subsection, we describe a modified protocol that has an easier

security proof. The only modification in this protocol is setting the number of INFO-Z

and INFO-X bits to be fixed, rather than letting them vary probabilistically. This

change simplifies the description of the protocol, because it is no longer needed to set the

probability p and to treat illegal choices of b, s (see Remark 1); and it also simplifies the

security proof, because it is no longer needed to probabilistically analyze the numbers

of INFO-Z and INFO-X bits (as done in Subsection 7.3.3).

In the “modified efficient BB84” protocol, the strings b and s together define a

random partition of the set of indexes {1, 2, . . . , N} into four disjoint sets:

• IZ (INFO-Z bits, where sj = 1 and bj = 0) of size tz;

• IX (INFO-X bits, where sj = 1 and bj = 1) of size tx;

• TZ (TEST-Z bits, where sj = 0 and bj = 0) of size nz; and

• TX (TEST-X bits, where sj = 0 and bj = 1) of size nx.

Formally, in “modified efficient BB84”, Alice and Bob agree on parameters tz, tx, nz, nx

(such that N = n+nz+nx and n = tz+tx), and we choose B = {b ∈ FN
2 | |b| = tx+nx}

and Sb = {s ∈ FN
2 | (|s| = n)∧ (|s∧ b| = nx)} for all b ∈ B (namely, it is required that

there are tz INFO-Z bits, tx INFO-X bits, nz TEST-Z bits, and nx TEST-X bits). The

112



probability distributions Pr(b) and Pr(s | b) are uniform (because |b|, which is the only

parameter that affects Pr(b) in Subsection 7.3.3, is fixed in the modified protocol).

Alice and Bob also agree on an error rate threshold, pa (applied both to the TEST-Z

bits and to the TEST-X bits). The testing function T is defined as follows:

T (iT ⊕ jT,bT, s) = 1 ⇔ (|iTZ
⊕ jTZ

| ≤ nz · pa) ∧ (|iTX
⊕ jTX

| ≤ nx · pa) . (7.116)

Namely, the test passes if and only if the error rate on the TEST-Z bits is at most pa

and the error rate on the TEST-X bits is at most pa.

Proposition 7.15. For any ε > 0,

Pr

[(
|CI|
n

> pa + ε

)
∧ (T = 1)

]
≤ Pr

[(
|CIZ |
tz

> pa + ε

)
∧ (T = 1)

]
+ Pr

[(
|CIX |
tx

> pa + ε

)
∧ (T = 1)

]
. (7.117)

Equation (7.117) similarly applies to the hypothetical “inverted-INFO-basis” protocol,

too (namely, it applies even if Pr is replaced by Prinverted-INFO-basis).

Proof. The same proof as Proposition 7.12.

Theorem 7.16. Let us be given δsec > 0, δrel > 0, and, for infinitely many values of

n, a family {vn1 , . . . , vnrn+mn} of linearly independent vectors in Fn
2 such that δsec <

v̂
n

and such that the parity-check matrix PC, whose rows are {vn1 , . . . , vnrn}, defines an

error-correcting code that can correct up to n · δrel errors on an n-bit string. Then for

any pa > 0 and εsec, εrel > 0 such that pa + εsec ≤ δsec
2 and pa + εrel ≤ δrel, and for any

tz, tx, nz, nx > 0 such that n = tz + tx, it holds for the “modified efficient BB84” protocol

that
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2
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Proof. By using Corollary 7.6 and Proposition 7.15, we get the following bound:
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]
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For bounding these probabilities, we use Corollary 2.2:

In the real protocol, the INFO-Z and TEST-Z bits are sent and measured in the

z basis, while the INFO-X and TEST-X bits are sent and measured in the x basis.

Therefore, the random and uniform sampling of the tz INFO-Z bits out of the tz + nz

bits sent in the z basis (assuming that the INFO-X and TEST-X bits have already been

chosen) does not affect the bases in the real protocol; similarly, the random and uniform

sampling of the tx INFO-X bits out of the tx+nx bits sent in the x basis (assuming that

the INFO-Z and TEST-Z bits have already been chosen) does not affect the bases in the

real protocol. This means that we can apply Corollary 2.2 to both of these samplings,

and we get

Pr

[(
|CIZ |
tz

> pa + εrel

)
∧
(
|CTZ

|
nz

≤ pa
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≤ e
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Pr
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≤ e
−2
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nx
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)2
txε2rel . (7.121)

In the hypothetical “inverted-INFO-basis” protocol, the INFO-X and TEST-Z bits

are sent and measured in the z basis, while the INFO-Z and TEST-X bits are sent and
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measured in the x basis. Therefore, the random and uniform sampling of the tx INFO-X

bits out of the tx + nz bits sent in the z basis (assuming that the INFO-Z and TEST-X

bits have already been chosen) does not affect the bases in the hypothetical protocol;

similarly, the random and uniform sampling of the tz INFO-Z bits out of the tz + nx

bits sent in the x basis (assuming that the INFO-X and TEST-Z bits have already been

chosen) does not affect the bases in the hypothetical protocol. This means that we can

apply Corollary 2.2 to both of these samplings, and we get

Prinverted-INFO-basis
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> pa + εsec
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∧
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To sum up, we get the following bound:
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Similarly to the standard BB84 and to the “efficient BB84” protocols, we get the

following results on vector families satisfying the requirements of Theorem 7.16: the

bit-rate satisfies

Rsecret ,
mn

n
< 1−H2(2pa + 2εsec)−H2

(
pa + εrel +

1

n

)
, (7.125)

and the condition on the asymptotic error rate threshold is

H2(2pa + 2εsec) +H2

(
pa + εrel +

1

n

)
< 1. (7.126)

This gives an asymptotic error rate threshold of 7.56%.
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Chapter 8

From Practice to Theory: the

“Bright Illumination” Attack on

Quantum Key Distribution

Systems

In this chapter, we explain how the practical “Bright Illumination” attack on QKD

systems can be described as a theoretical “Reversed-Space” attack.

This chapter is based on a paper published in the 9th International Conference on

the Theory and Practice of Natural Computing (TPNC) in 2020 by Rotem Liss and Tal

Mor [LM20].

8.1 Introduction

In the area of quantum information processing, theory usually precedes experiment.

For example, the BB84 protocol was suggested in 1984 [BB84], five years before it

was implemented [BBBSS92], and it still cannot be implemented in a perfectly se-

cure way even today [LCT14, SK14]. The “Photon-Number Splitting” attack was

suggested in 2000 [BLMS00], but it is not implementable today. Quantum comput-

ing was suggested in the 1980s [Deu85, Fey82, Ben80], but no useful and universal

quantum computer (with a large number of clean qubits) has been implemented un-

til today [Pre18]. The same applies to Shor’s factorization algorithm [Sho94, Sho99],

quantum teleportation [BBCJPW93] (at least to some extent; see also [PHB+14]), and

many other examples.

In contrast to the above examples, the “Bright Illumination” attack against practical

QKD systems was presented and fully implemented in 2010 [LWWESM10], prior to

any theoretical prediction of the possibility of such an attack.

In this chapter, we ask the question: could the “Bright Illumination” attack have
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been theoretically predicted? How can the “Bright Illumination” attack be theoretically

modeled (even approximately) by using the Fock space notations? We show that the

“Bright Illumination” attack can be modeled as a “Reversed-Space” attack [GM12] (or,

more generally, as a “Quantum Space” attack [GM07, Gel08, GM12]) and that this

attack and similar attacks could and should have been suggested by theoreticians.

8.2 Imperfections in Experimental Implementation of QKD

In this chapter, we usually consider the polarization-based implementations of BB84

discussed in Subsection 2.5.2, in which |0〉 = |↔〉, |1〉 = |l〉, |+〉 = |↗↙〉, and |−〉 = |↖↘〉.
For describing the practical system, we use the Fock space notations described in

Subsection 2.5.1, in which the |m1,m0〉 state represents m1 indistinguishable photons

in the |1〉 mode and m0 indistinguishable photons in the |0〉 mode.

Two important examples of imperfections (see [GM16]) are highly relevant to various

“Reversed-Space” attacks. As we show in this chapter, these two imperfections must be

combined for understanding the “Bright Illumination” attack.

Imperfection 1: Our realistic assumption, which is true for standard detectors in

QKD implementations, is that Bob’s detectors cannot count the number of photons in a

pulse. Thus, they cannot distinguish all Fock states |m〉 from one another, but can only

distinguish the Fock state |0〉 (a lack of photons) from the Fock states {|m〉 : m ≥ 1}.
Namely, standard detectors can only decide whether the mode is empty (m = 0) or

has at least one photon (m > 0). In contrast, we assume that Eve can (in principle)

do anything allowed by the laws of quantum physics; in particular, Eve may have such

“photon counters”.

In particular, let us assume that there are two pulses, each of them consisting of a

single mode. Bob cannot know whether a pulse contains one photon or two photons;

therefore, he cannot distinguish between |1〉|0〉 and |2〉|0〉 (and, similarly, he cannot

distinguish between |0〉|1〉 and |0〉|2〉). For example, assume that Alice sends the |1〉|0〉
state (a qubit) to Bob, and Eve replaces Alice’s state by |2〉|0〉 and sends it to Bob

instead (or, similarly, assume that Eve replaces |0〉|1〉 by |0〉|2〉). In this case, Bob cannot

notice the change, and no error can occur; still, Bob got a state he had not expected to

get. It may be possible for Eve to take advantage of this fact in a fully-designed attack.

Imperfection 2: Our realistic assumption is that Bob cannot know exactly when the

photon he measured arrived. For example (in a polarization-based implementation):

• Alice’s ideal qubit arrives at time t (states denoted |0, 1〉t|0, 0〉t+δ , |1, 0〉t|0, 0〉t+δ).

• Eve’s photon may arrive at time t+δ (states denoted |0, 0〉t|0, 1〉t+δ , |0, 0〉t|1, 0〉t+δ).

Again, Eve may take advantage of this fact in a fully-designed attack.
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Similar imperfections can be found if Bob cannot know exactly what the wavelength

of the photon is, or where the photon arrives.

The conceptual difference between the two imperfections is in whether Bob

can (ideally) avoid measuring the extra states sent by Eve, or not:

• In Imperfection 1, Eve may send more than one photon, and Bob must measure

the state (while he cannot count the number of photons using current technology).

• In Imperfection 2, Eve sends states in two separate subsystems. Bob can, in

principle, ignore the “wrong” subsystem in case he knows for sure it has not been

sent by Alice.

8.3 The “Bright Illumination” Attack

The “Bright Illumination” blinding attack [LWWESM10] works against QKD systems

that use Avalanche Photodiodes (APDs) as Bob’s detectors. As an example, we describe

below the implementation of this attack against a system implementing the BB84

protocol in a polarization-based scheme, but it is important to note that the attack can

be adapted to most QKD protocols and implementations that use APDs [LWWESM10].

The APDs can be operated in two “modes of operation”: the “linear mode” that

detects only a light beam above a specific power threshold, and “Geiger mode” that

detects even a single photon (but cannot count the number of photons). In this attack,

the adversary Eve sends a continuous strong light beam towards Bob’s detectors, causing

them to operate only in the linear mode (thus “blinding” the detectors).

After Bob’s detectors have been blinded (and in parallel to sending the continuous

strong beam, making sure they are kept blind), Eve performs a “measure-resend” attack:

she detects the qubit (single photon) sent by Alice, measures it in one of the two bases

(exactly as Bob would do), and sends to Bob a strong light beam depending on the

state she measured, a little above the power threshold of the detectors. For example,

if Eve measures the state |1, 0〉, she sends to Bob the state |m, 0〉 for m� 1. Now, if

Bob chooses the same basis as Eve, he will measure the same result as Eve; and if Bob

chooses a different basis, he will measure nothing, because the strong light beam will

get split between the two detectors. This means that Bob will always either measure

the same result as Eve or lose the bit.

In the end, Bob and Eve have exactly the same information, so Eve can copy Bob’s

classical post-processing and get the same final key as Alice and Bob do. Moreover,

Eve’s attack causes no detectable disturbance, because Bob does not know that his

detectors have operated in the wrong mode of operation; the only effect is a loss rate

of 50% (that is not problematic: the loss rate for the single photons sent by Alice is

usually much higher, so Eve can cause Bob to get the same loss rate he expects to get).
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This attack was both developed and experimentally demonstrated against commercial

QKD systems by [LWWESM10]. See [LWWESM10] for more details and for diagrams.

8.4 “Reversed-Space” Attacks

The “Reversed-Space” methodology, described in [Gel08, GM16, GM12], is a theo-

retical framework of attacks exploiting the imperfections of Bob. This methodology

is a special case (easier to analyze) of the more general methodology of “Quantum

Space” attacks [GM07, Gel08], that exploits the imperfections of both Alice and Bob;

the “Reversed-Space” methodology assumes Alice to be ideal and only exploits Bob’s

imperfections [Gel08, GM12, BGM14, GM16]. (Another special case of a “Quantum

Space” attack is the “Photon-Number Splitting” attack described in Subsection 2.5.3.)

In the ideal QKD protocol, Bob expects to get from Alice a state in the Hilbert

space HA; however, in the “Reversed-Space” attack, Bob gets from Eve an unexpected

state, residing in a larger Hilbert space called the “space of the protocol” and denoted

by HP. In principle, Eve could have used a huge space H′ such that HA ⊆ HP ⊆ H′:
the huge Hilbert space H′ consists of all the quantum states that Eve can possibly send

to Bob, but it is too large, and most of it is irrelevant.

Because “Reversed-Space” attacks assume a “perfect Alice” (sending prefect qubits),

it is usually easy to find the relevant subspace HP, as we demonstrate by three examples

below; HP is only enlarged (relative to the ideal space HA) by Bob’s imperfections.

Therefore, HP is the space that includes all the states that may be useful for Eve to

send to Bob. The space HP is defined by taking all the possible measurement results of

Bob and reversing them in time; more precisely, it is the span of all the states in HA

and all the states that Eve can send to Bob so that he gets the measurement results she

desires.

Whether Bob is aware of it or not, his experimental setting treats not only the states

in HA, but all the possible inputs in the “space of the protocol” HP. Bob then classifies

them into three classes: (1) valid states from Alice, (2) losses, and (3) invalid states.

Valid states are always treated in conventional security analysis: a random subset is

compared with Alice for estimating the error rate, and then the final key is obtained

using the error correction and privacy amplification processes. Losses are expected, and

they are not counted as noise. Invalid states are usually counted as errors (noise), but

they do not appear in ideal analyses of ideal protocols. We note that loss rate and error

rate are computed separately: the error rate must be small (e.g., around 10%) for the

protocol not to be aborted by Alice and Bob, while the loss rate can be much higher

(even higher than 99%). Any “Reversed-Space” attack takes advantage of the possibility

that Bob treats some states in HP in the wrong way, because he does not expect to get

these states.

Eve’s attack is called “Reversed-Space” because Eve can devise her attack by looking

at Bob’s possible measurement results: Eve finds a measurement result she wants to
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be obtained by Bob (because he interprets it in a way desired by her) and reverses the

measurement result in time for finding the state in HP she should send to Bob. In

particular, if Bob applies the unitary operation UB on his state prior to his measurement,

Eve should apply the inverted operation U−1B = U†B to each state corresponding to each

possible measurement outcome of Bob.

We present three examples of “Reversed-Space” attacks. For simplicity, we only con-

sider BB84 implemented in a polarization-based scheme (as described in Subsection 2.5.2

and Section 8.2), but the attacks may be generalized to other implementations, too. We

emphasize that all three examples have been chosen to satisfy two conditions, also satis-

fied by the “Bright Illumination” attack: (a) Eve performs a “measure-resend” attack

in a basis she chooses randomly, and (b) it is possible for Eve to get full information

without inducing noise.

Example 1 (a special case of the “Trojan Pony” attack [GLLP04]): This

example exploits Imperfection 1 described in Section 8.2, and it assumes Bob uses an

“active” basis choice (see Subsection 2.5.2).

In this attack, Eve performs a “measure-resend” attack—namely, she measures each

qubit state sent from Alice to Bob in a random basis, and resends “it” towards Bob.

However, instead of resending it as a single photon, she resends a huge number of

photons towards Bob: she sends many identical photons, all with the same polarization

as the state she measured (|0〉, |1〉, |+〉, or |−〉). If Bob chooses the same basis as Eve,

he will get the same result as her, because Imperfection 1 causes his system to treat

the incoming states |0,m〉 and |m, 0〉 (for any m ≥ 1) as if they were |0, 1〉 and |1, 0〉,
respectively; but if he chooses a different basis from Eve, both of his detectors will

(almost surely) click. If Bob decides to treat this invalid event (a two-detector click) as

an “error”, the error rate will be around 50%, so Alice and Bob will abort the protocol;

but if he naively decides to treat this event as a “loss”, Eve can get full information

without inducing errors.

Alice sends an ideal qubit (a single photon), while Eve may send any number of

photons. Therefore, using the Fock space notations, HA = H2 , Span{|0, 1〉, |1, 0〉} and

HP = Span{|m1,m0〉 : m1,m0 ≥ 0}.

Example 2 (a special case of the “Faked States” attack [MH05, MAS06,

Gel08]): This attack exploits Imperfection 2 described in Section 8.2. We assume

that Bob has four detectors (namely, that he uses the “passive” basis choice variant

of the polarization-based encoding: see Subsection 2.5.2), and that his detectors have

different (but overlapping) time gates during which they are sensitive: given the three

different times t0 < t1/2 < t1, the detectors for the computational basis are sensitive

only to pulses sent at t0 or t1/2 (or in between), and the detectors for the Hadamard

basis are sensitive only to pulses sent at t1/2 or t1 (or in between). Alice normally sends

her pulses at t1/2 (when both detectors are sensitive), but Eve may send her pulses at
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t0, t1/2, or t1.

Eve performs a “measure-resend” attack by measuring Alice’s state in a random

basis, and resending it towards Bob as follows: if Eve measures in the computational

basis, she resends the state at time t0; and if she measures in the Hadamard basis, she

resends the state at time t1. Therefore, Bob gets the same result as Eve if he measures

in the same basis as hers, but he gets a loss otherwise (because Bob’s detectors for the

other basis are not sensitive at that timing). This means that Eve gets full information

without inducing any error.

Using the same notations as in Imperfection 2, the state |m1,m0〉t0 |n1, n0〉t1/2 |o1, o0〉t1
consists of the Fock states |m1,m0〉 sent at time t0, |n1, n0〉 sent at time t1/2, and |o1, o0〉
sent at time t1. Alice sends an ideal qubit (a single photon at time t1/2), while Eve may

send a single photon at any of the times t0, t1/2, or t1, or a superposition.

Therefore, HA = H2 , Span{|0, 0〉t0 |0, 1〉t1/2 |0, 0〉t1 , |0, 0〉t0 |1, 0〉t1/2 |0, 0〉t1} and

HP = Span{|0, 1〉t0 |0, 0〉t1/2 |0, 0〉t1 , |1, 0〉t0 |0, 0〉t1/2 |0, 0〉t1 , |0, 0〉t0 |0, 1〉t1/2 |0, 0〉t1 ,

|0, 0〉t0 |1, 0〉t1/2 |0, 0〉t1 , |0, 0〉t0 |0, 0〉t1/2 |0, 1〉t1 , |0, 0〉t0 |0, 0〉t1/2 |1, 0〉t1}.

Example 3 (the “Fixed Apparatus” attack [BGM14]) can be applied by Eve

if Bob uses a “passive” basis choice (see Subsection 2.5.2). In this attack, Eve sends to

Bob an unexpected state, and this state “forces” Bob to obtain the basis Eve wants.

This attack makes it possible for Eve to force Bob choose the same basis as her (and,

therefore, get the same outcome as her), thus stealing the whole key without inducing

any errors or losses. The attack is only possible if Eve has a one-time access to Bob’s

laboratory, because it requires Eve to first compromise Bob’s device (otherwise, she

cannot send him that unexpected state).

Assume that Bob uses a polarization-independent beam splitter that splits the

incoming beam into two different output arms (as described in Subsection 2.5.2). This

beam splitter has two input arms: a regular arm, through which the standard incoming

beam comes, and a blocked arm, where the incoming state is always assumed to be

the zero-photon beam |0, 0〉 (the vacuum state of two polarizations). If Eve can drill

a small hole in Bob’s device, exactly where the blocked arm gets its input from, then

she can send a beam to the blocked arm and not only to the standard arm. It is

proved [BGM14] that Eve can then cause the beam splitter to choose an output arm to

her desire, instead of choosing a “random” arm. The state |m1,m0〉r|n1, n0〉b consists of

the Fock state |m1,m0〉 sent through the regular arm of the beam splitter and the Fock

state |n1, n0〉 sent through the blocked arm. Alice sends an ideal qubit (a single photon

through the regular arm), while Eve may send a single photon through any of the two

arms or a superposition. Therefore, HA = H2 , Span{|0, 1〉r|0, 0〉b , |1, 0〉r|0, 0〉b} and

HP = Span{|0, 1〉r|0, 0〉b , |1, 0〉r|0, 0〉b , |0, 0〉r|0, 1〉b , |0, 0〉r|1, 0〉b}.
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8.5 Quantum Side-Channel Attacks

Shamir’s “Quantum Side-Channel Attack” on Polarization-Based QKD: The

following attack was proposed by Adi Shamir in a meeting with Tal Mor (one of the

authors of [LM20], on which this chapter is based) around 1996–1999 [Sha], and it may

have never been published (but see similar attacks below). Shamir’s attack only applies

to QKD implementations that use “active” basis choice (as opposed to the “passive”

basis choice, which leads to the “Fixed Apparatus” attack described in Example 3 of

Section 8.4). The attack is related to Imperfection 2 described in Section 8.2: Bob’s

apparatus must be fully or partially ready to receive Alice’s photon before it arrives.

For example, if the photon is supposed to arrive at time t, then Bob’s setup is already

partially ready at time t− δ; in particular, Bob decides the basis choice and configures

the polarizing beam splitter accordingly before time t− δ. The attack also assumes that

the detectors themselves are still inactive (blocked) at time t− δ, and are activated just

before time t. Therefore, at time t− δ, the polarizing beam splitter is already configured

to match the required basis (the computational basis or the Hadamard basis), while the

detectors are still blocked.

Eve’s attack is sending a strong pulse at time t− δ, that hits the polarizing beam

splitter (but not the blocked detectors) and gets reflected back to Eve, containing full

or partial information on the direction of the polarizing beam splitter—and, thus, on

the basis choice. Assuming Eve gets the information on Bob’s basis choice before she

receives Alice’s pulse, Eve could employ the following full attack: Eve measures the

photon coming from Alice in the same basis chosen by Bob, learns the qubit’s value,

and resends to Bob the resulting state (in the same basis), obtaining full information

while inducing no errors and no losses.

One can suggest two ways to possibly prevent the attack: (a) opening the detection

window (activating the detectors) shortly after the polarizing beam splitter is configured

according to the basis choice (if the time difference is sufficiently short, Eve cannot find

Bob’s basis choice on time for employing the full attack); or (b) blocking access to the

polarizing beam splitter until the detectors are activated (although this solution may

be hard to implement).

As we explain in Section 8.6, the “Bright Illumination” attack could have been

predicted by adding Imperfection 1 described in Section 8.2 (namely, detection of

multi-photon pulses) to the above idea of a strong pulse sent at time t− δ towards Bob

(i.e., Imperfection 2, as already discussed here) and using the Fock space notations.

“Conventional Optical Eavesdropping” and “Quantum Side-Channel At-

tacks”: Other attacks, similar to Shamir’s attack, have been independently developed—

for example, the “Large Pulse” attack [VMH01], which attacks both Alice’s and Bob’s

set-ups. As written in [VMH01]: “This [large pulse] attack is one of the possible methods

of conventional optical eavesdropping, a new strategy of eavesdropping on quantum
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cryptosystems, which eliminates the need of immediate interaction with transmitted

quantum states. It allows the eavesdropper to avoid inducing transmission errors that

disclose her presence to the legal users.”

Instead of restricting ourselves to “conventional optical eavesdropping on quantum

cryptosystems”, we make use of a different sentence from [VMH01]—“eavesdropping

on quantum cryptosystems which eliminates the need of immediate interaction with

transmitted quantum states”—and we define “quantum side-channel attacks” as follows:

A quantum side-channel attack is any eavesdropping strategy which eliminates the

need of any immediate interaction with the transmitted quantum states.

According to the above definition, both Shamir’s attack and the “Large Pulse”

attack are “quantum side-channel attacks”, because they attack the devices and not

the quantum states themselves. On the other hand, the “Reversed-Space” attacks and

the “Quantum Space” attacks (see Section 8.4) can be fully described using a proper

description of the QKD protocol, which uses the Fock space notations; therefore, they

should not be considered as “quantum side-channel attacks”. In fact, we can say they are

complementary to “quantum side-channel attacks”, and we name them “state-channel

attacks”.

In a classical communication world, the notion of “side-channel attacks” makes

use of any information leaked by the physical execution of the algorithm (see, for

example, [KB07]). Accordingly, other researchers (e.g., [SBPCDLP09]) have chosen to

adopt a wide definition of “quantum side-channels”, which also includes the “Photon-

Number Splitting” attack and many other practical attacks. However, we prefer to take

a narrower view of “quantum side-channel attacks”, as explained above.

8.6 From Practice to Theory: The Possibility of Predict-

ing the “Bright Illumination” Attack

The “Bright Illumination” attack could have been predicted, because it simply combines

Imperfections 1 and 2 that were described in Section 8.2: namely, detecting many

photons at time t − δ, while the single “information” photon should have arrived at

time t. In some sense, it seems to merge a “Reversed-Space” attack and a “quantum

side-channel attack”, because it attacks both the transmitted quantum states and the

detectors themselves. However, because Bob’s detectors are fully exposed to Eve at

both times t and t− δ (unlike the “Large Pulse” attack [VMH01], where the detectors

are not exposed at time t − δ), we see the “Bright Illumination” attack as a special

(and fascinating) case of “Reversed-Space” attack, and not as a “quantum side-channel

attack”.

The “Bright Illumination” attack is made possible by a lack of information on the

“space of the protocol” HP: Eve sends many photons (as in Imperfection 1) at time t− δ
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(as in Imperfection 2), and Bob does not notice her disruption because he cannot count

the number of photons and cannot block the detectors at time t− δ.

For preventing all the possible attacks and proving full security, it must be known

how Bob’s detectors treat any number m of photons sent to him by Eve, and it must

also be known how Bob’s detectors treat multiple pulses. In particular, a detector

definitely cannot operate properly in the hypothetical scenario where an infinite number

of photons (with infinite energy) arrives as its input. A potentially secure system must

have an estimated threshold N , such that if m . N photons arrive, they are correctly

measured by the detectors (treated as one photon), and if m & N photons arrive, the

measurement result is clearly invalid and is known to Bob (for example, smoke comes

out of the detectors, or the detectors are burned). N is estimated, so there is a small

unknown range near it.

Prior to the “Bright Illumination” attack, it seems that no systematic effort has been

invested in finding or approximating the threshold N and characterizing the detectors’

behavior on all possible inputs (any number of photons m). A proper “Reversed-Space”

analysis would have suggested that experimentalists must check what N is and fully

analyze the behavior of Bob’s detectors on each quantum state; such an analysis would

then have found the “space of the protocol” HP which is available for Eve’s attack.

A careful “Reversed-Space” analysis—if it had been carried out—would then have

found that instead of one estimated threshold N (with some small unknown range

around it), there are two estimated thresholds N1, N2, such that N1 < N2, with a

some small unknown range around each of them, and a large difference between them.

Therefore, there are three main ranges of the numbers of photons m: (a) for m . N1

photons, Bob’s detectors work well (and click if at least one photon arrives); (b) for

N1 . m . N2 photons, it would have become known that some strange phenomena

happen—for example, that Bob’s detectors switch to the “linear mode”; and (c) for

m & N2 photons, Bob’s detectors malfunction (e.g., the detectors are burned).

Thus, surprisingly, even if the experimentalist had not known about the two modes

of operation (“Geiger mode” and the “linear mode”) existing for each detector, he or she

could still have discovered the two different thresholds N1, N2 and then investigated the

detectors’ behavior in the middle range N1 . m . N2. This would have allowed him or

her to discover the “linear mode” and realize that there is also a need to check multiple

pulses for finding the correct “space of the protocol” and for analyzing the security

against “Reversed-Space” attacks. Namely, the “Reversed-Space” approach makes it

possible to discover attacks even if the detectors are treated as a black box whose

internal behavior is unknown. By theoretically trying to prove security against any

theoretical “Reversed-Space” attack, it would have been possible to find the practical

“Bright Illumination” attack; it would have even been possible to study the operation of a

“black-box” detector and discover, for example, that it has a “linear mode” of operation

(even if this mode of operation had not been already known for realistic detectors).

125



8.7 Conclusion

We have seen a rare example (in quantum information processing) where experiment

preceded theory. We can see now that this experimental attack could have been

theoretically predicted: for a system to be secure, Bob must be sure that Eve cannot

attack by sending an unexpected number of photons, and he must know what happens

to his detectors for any number of photons. Otherwise—Eve can attack; and we could

have known that this may be possible.

We have also defined the general notion of “quantum side-channel attacks”: we

have distinguished “state-channel attacks” (including “Reversed-Space” and “Quantum

Space” attacks) that interact with the transmitted (prepared or measured) quantum

states, from “quantum side-channel attacks” that do not interact with the transmitted

quantum states.
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Chapter 9

Summary

In this research, we have answered several important questions about security of QKD:

1. In Chapters 3, 4, and 5, we have discussed practical security of semiquantum

key distribution (SQKD) protocols. Unlike previous SQKD protocols, our newly

suggested “Mirror protocol” is experimentally feasible, and we have proved it

secure against “uniform collective” attacks.

Notice that these chapters analyze security of a two-way protocol (see Subsec-

tion 2.2.2) which is harder to analyze than one-way protocols; thus, as explained

in Section 5.1, its security analysis is limited to uniform collective attacks.

2. In Chapters 6 and 7, we have improved and generalized the security approach

of [BBBMR06] to prove fully composable security of the BB84 protocol and many

of its variants against the most general attacks.

3. In Chapter 8, we have shown how a practical attack (the “Bright Illumination”

attack) can be theoretically modeled as a “Reversed-Space” attack.

All three directions share the motivation of bridging the gap between theory and

practice, and all of them are aimed (in different ways) to answer one ultimate question:

can we experimentally implement a QKD protocol with full and unconditional security

against any possible attack (including all attacks that use practical imperfections)? This

general question is one of the most important open problems in the field of QKD.

More specific open problems include: analyzing experimental implementations of

the Mirror protocol; proving unconditional security of SQKD protocols against the most

general attacks (and not only collective or “uniform collective” attacks) and against

all multi-photon attacks; generalizing [BBBMR06]’s security approach to various QKD

protocols that are not similar to BB84; and systematically mapping practical attacks to

theoretical models.

Much work remains to be done on the general problem of obtaining full security proofs

for realistic QKD systems, but we believe our research has improved the understanding

of practical security in a variety of important sub-fields of QKD.
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פרקטי למימוש ובטוח יעיל חדש, SQKD פרוטוקול היא התוצאה .(uniform collective attacks או

התקפות. של רחב מגוון כנגד

הקרוי ביותר, והחשוב הראשון QKDה־ פרוטוקול של להרכבה'' ה''ניתנת הבטיחות את חקרנו שנית,

כמו ,BB84 לפרוטוקול .(1984 בשנת אותו ופרסמו אותו שהמציאו וברסר בנט שם (על BB84

בהתקפות המשתמשים מאוד חזקים יריבים נגד בטיחות הוכחות קיימות נוספים, רבים לפרוטוקולים

מההוכחות חלק זאת, עם יחד הפרוטוקול; של (אידאלי) תאורטי מימוש על האפשריות ביותר הכלליות

כאשר גם סודי נשאר שהמפתח מוכיחות אינן הן כלומר, – להרכבה'' ''ניתנת בטיחות מראות אינן

6 בפרק הצפנה). לצורך (למשל, קריפטוגרפי מפרוטוקול כחלק בפועל בו משתמשים ובוב אליס

כנגד להרכבה'' ה''ניתנת בטיחותו את והוכחנו ,''BB84-INFO-z'' הקרוי שונה, מעט בפרוטוקול דנו

מסוימת אלגברית בטיחות גישת הרחבנו 7 בפרק קודם. שהזכרנו הקיבוציות'' ה''התקפות מחלקת

שהיא הראינו ,BB84 עבור להרכבה'') ''ניתנת (שאינה בטיחות להוכיח כדי בה השתמשו שבעבר

וכן ,BB84-INFO-z עצמו, BB84 היתר: (בין BB84 על המבוססים פרוטוקולים מגוון עבור עובדת

''ניתנת בטיחות תוכיח שהיא כדי אותה ושינינו יותר), יעיל מימוש המאפשרים BB84 של וריאנטים

יכולה שהיא והראינו הזו הבטיחות גישת את שיפרנו כלומר, האפשריות: ההתקפות כל כנגד להרכבה''

יותר. ומורכבות אחרות בגישות שהושגו לתוצאות הדומות טובות תוצאות להשיג

,QKD מערכות על ''Bright Illumination'' הנקראת חשובה פרקטית התקפה חקרנו 8 בפרק לבסוף,

.(''Reversed-Space Attacks'') התקפות של תאורטי מודל באמצעות אותה למדל שניתן והראינו

תאורטי. ניתוח בעזרת זה מסוג פרקטיות התקפות לחזות ניתן עקרוני, שבאופן מראה זו תוצאה

עשויות והן ,QKDה־ בתחום לניסוי תאוריה בין הקיים הפער על לגשר מיועדות שמצאנו התוצאות כל

QKD של ויעיל פרקטי מימוש לבנות כיצד זה: בתחום החשובות הפתוחות הבעיות אחת בפתרון לעזור

האפשריות. ההתקפות כל כנגד לחלוטין בטוח שהוא סייגים) (ללא להוכיח שניתן האמיתי, בעולם

ii



תקציר

לחשוב היה שניתן לאינטואיציה מנוגדים פיסיקליים מצבים ליצור מאפשרים הקוונטית הפיסיקה חוקי

כמה של – הפרש או סכום כגון – בסופרפוזיציה להיות עשוי חלקיק למשל, אפשריים: בלתי שהם

אינפורמציה עיבוד הנקרא המחקר תחום שונים. מצבים כמה או שונים, זמנים כמה שונים, מיקומים

לנו מאפשר הוא ולכן ועיבודה, אינפורמציה ייצוג לצורך האלה החוקים את לנצל דרכים חוקר קוונטית

קלאסיים תקשורת ולמכשירי למחשבים קשות) שהן (או אפשריות שאינן משימות ולבצע בעיות לפתור

ולא־קוונטיים. סטנדרטיים כלומר, –

המפתחות הפצת שיטת פיתוח הוא הקוונטית האינפורמציה בתחום שהושגו הראשונים ההישגים אחד

לשני לאפשר נועדו QKD פרוטוקולי .(QKD בקיצור או ,Quantum Key Distribution) הקוונטית

לשניהם. ומשותף אקראי לחלוטין, סודי מפתח ליצור ו''בוב'') ''אליס'' כלל בדרך (המכונים משתמשים

מהיריבה למנוע דרך שום אין שבו (לא־קוונטי), קלאסי בעולם אפשרית בלתי היא כזו מלאה סודיות

נשמרת הסודיות הקוונטי בעולם זאת, לעומת לבוב; אליס בין המשודר המידע כל את להעתיק ''איב''

מנוגדת שאינה פעולה כל לבצע יכולה היא אם ואפילו מוגבל, בלתי חישוב כוח יש לאיב אם אפילו

יכולה איב מאומת: קלאסי ובערוץ לא־בטוח קוונטי בערוץ משתמשים ובוב אליס הפיסיקה. לחוקי

להאזין רק לה מותר אבל הקוונטי, בערוץ הנשלחים הקוונטיים המצבים כל את כרצונה ולשנות ליירט

לשנותו). יכולה אינה (היא הקלאסי בערוץ הנשלח הקלאסי המידע לכל

בעיות של רחב מגוון קיים בתאוריה: רק נכונה QKD של המושלמת'' ה''בטיחות הבטחת הצער, למרבה

התאורטיים הפרוטוקולים את במדויק מממשים אינם הם כי האמיתי, בעולם QKD במימושי בטיחות

כלל בדרך מניחים תאורטיים QKD פרוטוקולי (למשל, אמיתיים. קוונטיים ברכיבים משתמשים אלא

או פוטונים שני לפעמים שולחת היא במציאות אבל בודד, (פוטון) אור חלקיק לבוב שולחת שאליס

שונות: פרקטיות סביבות בכמה QKD פרוטוקולי מגוון של בטיחותם את חקרנו לכן יותר.)

Semiquantum Key) קוונטית־למחצה מפתחות הפצת פרוטוקולי של הבטיחות את בדקנו ראשית,

יכולים אינם כלומר, – ''קלאסיים'' הם בוב או אליס שבהם ,(SQKD בקיצור או ,Distribution

קיימים, SQKD בפרוטוקולי פרקטיות בטיחות בעיות ניתחנו 3 בפרק קוונטיות. פעולות לבצע

במראה שימוש על המבוסס ,''Mirror (''פרוטוקול יותר מורכב ומעט חדש SQKD פרוטוקול הצענו

שהפרוטוקול והראינו מאובטח, פרקטי למימוש וניתן הנ''ל הבטיחות בעיות את שפותר מתכווננת)

מעט מפשטים שאם הוכחנו 4 בפרק .(complete robustness) בסיסיות בטיחות דרישות מקיים החדש

Mirror פרוטוקול של שמורכבותו והסקנו בטוח, שאינו פרוטוקול מקבלים ,Mirror פרוטוקול את

כנגד Mirror פרוטוקול של הבטיחות את הוכחנו 5 בפרק לבסוף, חיונית. כנראה היא המקורי

דיוק, ליתר ;collective attacks או קיבוציות'', ''התקפות (הקרויות התקפות של נרחבת מחלקה

אחידות'' קיבוציות ''התקפות שנקראות אלה, התקפות של חשובה תת־קבוצה כנגד בטיחות הוכחנו

i





המחשב. למדעי בפקולטה מור, טל חבר פרופ' בהנחיית נעשה המחקר

ובכנסים: בכתבי־עת למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות רוב

1. Michel Boyer, Matty Katz, Rotem Liss, and Tal Mor. Experimentally feasible protocol
for semiquantum key distribution. Physical Review A, 96:062335, Dec 2017. doi:10.1103/

PhysRevA.96.062335. (Chapter 3)

2. Michel Boyer, Rotem Liss, and Tal Mor. Attacks against a simplified experimentally
feasible semiquantum key distribution protocol. Entropy, 20(7):536, Jul 2018. doi:10.3390/

e20070536. (Chapter 4)

3. Walter O. Krawec, Rotem Liss, and Tal Mor. Security proof against collective attacks
for an experimentally feasible semi-quantum key distribution protocol. arXiv preprint
arXiv:2012.02127, Dec 2020. URL: https://arxiv.org/abs/2012.02127. (Chapter 5)

4. Michel Boyer, Rotem Liss, and Tal Mor. Composable security against collective attacks of
a modified BB84 QKD protocol with information only in one basis. Theoretical Computer
Science, 801:96–109, Jan 2020. doi:10.1016/j.tcs.2019.08.014. (Chapter 6)

5. Rotem Liss and Tal Mor. From practice to theory: The “Bright Illumination” attack on
quantum key distribution systems. In Carlos Mart́ın-Vide, Miguel A. Vega-Rodŕıguez, and
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תודות

והעצות הרעיונות הדיונים, ועל המועילה הדרכתו על מור, טל חבר פרופ' שלי, למנחה להודות ברצוני
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למשפחתי. מגיעה מיוחדת תודה
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