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Abstract

The counter-intuitive features of quantum mechanics make it possible to solve problems
and perform tasks that are beyond the abilities of non-quantum (classical) computers
and communication devices. The field of quantum information processing studies how
we can achieve such improvements by representing information as quantum states.

One of the early achievements of quantum information processing is the development
of quantum key distribution (QKD). QKD protocols allow two participants (Alice and
Bob) to achieve the classically-impossible task of generating a secret shared key even if
their adversary is computationally unlimited.

Unfortunately, the security promises of QKD are true only in theory; practical
implementations of QKD deviate from the theoretical protocols, and many of these
deviations give rise to practical attacks. In this research thesis, we study the security
properties of various QKD protocols in many practical settings:

First, we study practical security of semiquantum key distribution (SQKD) protocols,
where either Alice or Bob is non-quantum (classical). Following practical security
problems in previous SQKD protocols, we suggest a new SQKD protocol (the “Mirror
protocol”) which can be securely implemented, and we prove it robust and secure against
a wide range of attacks (the “uniform collective attacks”).

Then, we study “composable security” of the first QKD protocol created by Bennett
and Brassard (BB84). BB84 has its unconditional security proved against adversaries
performing the most general attacks in a theoretical (idealized) setting; however, some
security approaches do not prove “composable security”, which requires the secret key
to remain secret even when Alice and Bob actually use it for cryptographic purposes.
We generalize an algebraic security approach for BB84, making it prove composable
security of BB84 (and many variants of BB84) against the most general attacks.

Finally, we analyze an important practical attack (named “Bright Illumination”),
showing how it can be modeled as a theoretical “Reversed-Space” attack.

Overall, all results aim to enhance our understanding on how to bridge the gap
between theory and practice in various sub-fields of QKD, and they may help solve a
major open problem in the field of QKD: constructing a realistic QKD implementation

that can be proved truly and unconditionally secure against any possible attack.






Chapter 1

Introduction to Quantum

Information Processing

The field of quantum information processing (QIP) uses the laws of quantum physics
for performing tasks that are impossible (or hard) in the non-quantum world.

In this chapter, we describe the basic notions of QIP that are used in this thesis.
See [NC00, Gru99, RP00, GMDO02] for more background and explanations about QIP.

1.1 Quantum States

In QIP, information is represented by quantum states. A quantum state is the state
of a specific physical system; all possible quantum states of the system belong to a
Hilbert space, which is defined as a vector space over the field C (the field of complex
numbers) that has an inner product and satisfies the “completeness” property (the exact
definition of this property can be found in standard textbooks, and it is satisfied by all
finite-dimensional inner product spaces). A quantum pure state is represented by |¢)),
which denotes a normalized column vector (namely, a column vector of norm 1) in the
Hilbert space. In other words, the Hilbert space is the set of all possible quantum pure
states of a system (including the non-normalized states).

As an important example, the qubit Hilbert space is Ho = Span{|o), |1)}, where
|o) and |1) are two orthonormal vectors (namely, they are normalized, and their inner
product is 0). Two other important orthonormal states in Hs are |[+) £ %
|—) 2 o)—|1)

VR The most general qubit pure state is |¢)) = alo) + (1), where a, 8 € C

and |a|? +|B8|> = 1 (a normalization condition). The qubit states are sometimes denoted

1 0
by their vector representations in the {|o),|1)} basis: |o) = < ), 1) = ( ),

and

0 1

1
orthonormal basis named “the z basis”, “the computational basis”, or “the standard

1 1 o .
|+) = % ( ), |—) = % ) and |[¢) = 5 ) We note that {|o),|1)} is an

basis”, and {|+),|—)} is an orthonormal basis named “the = basis” or “the Hadamard



basis”. We also note various notations of both bases: the states of the z basis are
sometimes denoted {|0%), [1°)} or {|o)o, [1)0}, and the states of the = basis are sometimes
denoted {|o'), [11)} or {|o)1,[1)1}.

We note that multiplying a pure state [1/) by any global phase €!® £ cos(¢) + i sin(¢)
has no physical significance. In other words, two pure states that differ only by a global
multiplicative phase e’ are identical for all intents and purposes.

The |¢) notation (the column vector) is named ket. A related notation, (¢|, is named
bra, and it is a row vector defined by (| £ [|1)]T: namely, the bra is the conjugate
transpose of the ket. For example, if 1)) = a|o) + 5|1), then (¢| = a*(o| + f*(1] (where
a* is the complex conjugate of «); in vector notations, (| = ( o* B* ).

Given an orthonormal basis {[11),[¥2),...,|¢¥m)}, the inner product of two pure
states 1) = 327 ayltpy) and [9) = 37T Bjlvy) is (¥l¢) £ 3271, o B;. The norm of 1)
is ||[)|| & /(W) = \/ et laj|?, and [4) is said to be normalized if 70, loj|? = 1.

1.1.1 Quantum Measurements

Quantum physics allows us to measure a quantum state [¢)) with respect to any
orthonormal basis {|¢1), [12), ..., |m)}. The possible measurement outcomes are all
states “10;” of this orthonormal basis; each outcome “¢;” (corresponding to the quantum
state [1);)) is obtained with probability p; = [(1;|¢)|>. Note that doitipi = (YY) =1,
Also note that a measurement result “¢;” is a classical (non-quantum) indicator that can
be read and used; we have not discussed the resulting quantum state after measurement,
but we should note that the original quantum state [¢)) may be ruined (or change its
state) following the measurement operation.

For example, if the quantum state |¢)) = a|o) + (|1) is measured with respect to the
orthonormal basis {|0),|1)} (namely, it is “measured in the z basis”), the “0” result is
obtained with probability |(o|¢))|? = |a|?, and the “1” result is obtained with probability
|(1|9)|? = |B|%. Notice that the normalization condition |a|? + |3]?> = 1 means that
these two probabilities sum to 1.

There are also generalized definitions of quantum measurements (see, e.g., in [NCO00]),

but they can all be reduced to the set of quantum operations described in Section 1.4.

1.1.2 Unitary Operators

Quantum physics allows us to apply any unitary operator U : H — H to a quantum state
in the Hilbert space H. Unitary operators are linear operators (namely, Ula|y) + B|¢)] =
aUl) + BU|¢)) that satisfy UT = U~!. They preserve inner products and norms.

As an important example, the Hadamard operator on the qubit space is defined by

1 1
H= % L) namely, H|o) = |+) and H|1) = |—). It also satisfies H|+) = |o)

and H|—-) = |1).



1.2 Bipartite and Multipartite Hilbert Spaces

1.2.1 Tensor Products of Hilbert Spaces

Given two physical systems, A and B, we would like to mathematically represent the
compound physical system AB (comprised of two subsystems: A and B), given that a
quantum state of subsystem A is represented by a vector in the Hilbert space Ha, and
a quantum state of subsystem B is represented by a vector in the Hilbert space Hg.

In this case, a quantum state of the compound (bipartite) system AB is represented
by a vector in the tensor product Hilbert space Ha ® Hp. An orthonormal basis for this
Hilbert space can be a product of two orthonormal bases for Ha and Hp: namely, if
{l1)A, [2)A, ..., |¥k)a} is an orthonormal basis for Ha, and {|¢1)B, |¢2)B; - -, |¢m)B}
is an orthonormal basis for Hp, then {|Yj)A ® [¢pg)p |1 < j <k, 1 <{<m}isan
orthonormal basis for Ha ® Hp.

As an important example, if A and B are both qubit systems (namely, H and
Hp are both Hy = Span{|o),|1)}), the compound two-qubit system is represented by
Ho ® Ha = Span{|o) @ |0) , [0) ®[1) , |1) ®|0) , |1) ® [1)}. A shorter notation is
Ho ® Ho = Span{|oo), |o1), [10), [11)}.

The tensor product of three or more Hilbert spaces (giving a multipartite Hilbert
space) is similarly defined. For example, Ho @ Ha ® Ho (a tripartite Hilbert space that
is the three-qubit space) is

Span{|o00), [0o1), |010), |011), |100), |101), |110),|111)}. (1.1)

1.2.2 Tensor Products of Vectors

Given two Hilbert spaces, Ha with an orthonormal basis {|¢1)a, [¥2)A, ..., |Yk)a}
and Hp with an orthonormal basis {|¢1)B,|¢2)B,---,|¢m)B}, and given two vectors

|ya = 2?21 ajlvj)a € Ha and |@) = Yoy Belér)B € HB, the tensor product vector
VYA @ |p)B € Ha @ Hp (or, using a shorter notation, [))a|d)p) is defined as

m

k. m
VIalo) 2D (ajlh)a) @ (Belde)) = > Y aiBelibj)alee)s (1.2)

j=1/¢=1 j=11/¢=1

For example, given |[¢))a = a|o)a + 5|1)a € Ha and |¢)B = v¥|0)B + 0|1)B € Ha, the
tensor product vector [)a|p)g € Ho @ Ha is

[V)Al@)B = ay|00)ap + adlor)ap + By|10)aB + B6]|11)AB. (1.3)

An example is

!0>AJ§I1) ]® [|O>B\;§|1>B}

= 5 l100)an—lon) n+[10) B ~[11) a8 (1.4

[+—)aB = {



We note that most states in Ha ® Hp are not tensor product vectors, and are thus
called entangled. Four important entangled two-qubit states (that form together an
orthonormal basis of Ho ® Ho, named the Bell basis or the BMR basis) are:

+ |11) |oo) — |11)

4 |00) A
‘(I)+> - \/5 ) |(D—> - \/5 ) (15)
» |01) +]10) » |01) —]10)

The definition of the tensor product is easily generalized to tensor products of three

(or more) vectors: for example,

|[+0—)aBc = [‘O>A\2’1>A] ® o) ® [‘O>C\é’l>c]
= %[|OOO>ABC — |oo1)aBc + [100)ABC — |101)ABC]- (1.7)

1.2.3 Tensor Products of Operators

Given two linear operators, U operating on the Hilbert space Ha and V operating on
the Hilbert space Hp, the linear operator U ® V' operates on the Hilbert space Ha ® Hp

and is defined as follows:

U V)(I)a®lo)s) = (Ulh)a) @ (VId)s). (1.8)

(It extends by linearity to vectors that are not tensor products, such as w.)

For example, the tensor product of the Hadamard operator H with itself, denoted
H ® H or H®?, operates as follows:

H®loo)ap = (Hl[o)a)® (H|o)B) = [++)aB , (1.9)
H®o1)ap = (Hlo)a)® (H1)B) = [+-)aB , (1.10)
H??|10)ap = (H[1)a) @ (H|o)s) = |—+)aB (1.11)
H®?1)ap = (H[1)a) @ (H[1)B) = |-—)ap - (1.12)

This definition is generalized to tensor products of three (or more) operators.

1.3 Quantum Mixed States

A quantum mized state is a probability distribution over several pure states: namely, it
is a set {(|¥;),q;)}; consisting of pairs of pure states |¢);) and probabilities g; (where
0<g; <1and Zj ¢; = 1), meaning that each pure state [¢;) has probability g;.
Unlike a pure state, a mixed state is not represented by a vector in Hilbert space. It
is represented by a density matrix: p = > j|;)(1;], where g; is the probability of
the pure state [¢;). (This definition of ¢; should not be confused with the probabilities



of measurement results, mentioned in Subsection 1.1.1.) In particular, the pure state

|1) is represented by the density matrix p = [1) (4]

For example, if the system is prepared in state |0) with probability % or in state
|+) with probability %, the corresponding quantum mixed state has density matrix
p= %]o) (o] —&—%H—) (+]. It should be emphasized that these probabilities are of preparation,

not of any measurement. For example, if this state is measured in the z basis {|o), |1)},

the probability of measuring “0” is % 14 % : % = %, and the probability of measuring

“1"is -0+ 2 -1 = 1; and if the state is measured in the z basis {|+),|—)}, the

3
probability of measuring “+” is % - 3

is % . % + % -0 = %. Notice that the probability of measuring “0” is not %, and the

)

+ % 1= %, and the probability of measuring “—’

probability of measuring “+” is not %

We note that several different probability distributions may represent the same mixed
state: namely, the states they represent are physically identical (e.g., giving exactly the
same measurement results in all orthonormal bases). This happens if and only if they
are represented by equal density matrices. (A similar observation is that a global phase
e'® for pure states has no physical significance; and, indeed, the two pure states [v)
and e’?|1)) are represented by identical density matrices, p = [1)(z)|.) For example, the
completely mized state p = 1|0)(o| + 3|1)(1] is the same as p = 2|+)(+| + 3|—)(~|, and
these two density matrices are equal.

A density matrix must always satisfy three conditions: (a) it is a Hermitian matrix;
(b) it is positive semidefinite; and (c) it is normalized (namely, its trace equals 1).
These three conditions are also sufficient: any matrix p satisfying them is a density
matrix. From these conditions it follows that any density matrix p can be presented as
p = _; Ajl;) (] (the spectral decomposition), where A; > 0, 37, A; = 1, and {[¢;)};
is an orthonormal set (of eigenvectors); in other words, for any mixed state we can
choose a corresponding probability distribution over a set of orthonormal states. For

example, for p = £[0) (0| + 2|4)(+|, the spectral decomposition is

3+ 5 [200) + (V5 - 1>rl>] 20| + (v5 — 1><1]
6 V10 — 25 V10 — 25
35 lzro>—<¢5+1>rl>] [2<or—<¢5+1><1]

(1.13)

6 V10 4 2v/5 V10 4 2V/5

and it is the unique decomposition of p as a mixture of orthonormal pure states; on
the other hand, the completely mixed state p = %[0} (o] + 2[1)(x| = |+)(+] + 3| —)(~|

has an infinite number of decompositions as a mixture of orthonormal pure states,

1
2

corresponding to the same eigenvalue.

because its eigenvalue (5) is degenerate—namely, it has two orthonormal eigenvectors
The probability distribution in the definition of mixed states represents the “standard”
(“classical”) notion of uncertainty, and not a quantum phenomenon: it simply represents

a lack of knowledge. Nonetheless, mixed states naturally appear in many areas of QIP. For



example, if a joint system AB is in the entangled pure state \/g]o>A|o>B + \/g|l>A\+>B,
the quantum state of subsystem B is the mixed state p = %|o)g(ols + 3|+)B(+|B
(see Subsection 1.3.2 for details about this computation) that we have seen before.
Moreover, we note that the state of the joint system AB can also be represented as
ﬁHM% - \/g|—>A|1>B; thus, the state of subsystem B can also be represented

as p = % [2|°>?/+5|1>B} [2<°|‘f/g<ll‘3} + %\1)3(1\3. This is another example of multiple

probability distributions corresponding to the same mixed state.

We should note an important difference between pure states and mixed states:
for a pure state |1), there exists an orthonormal basis (consisting of |¢) itself and
states orthonormal to it) such that if we measure |¢) in this basis, we obtain a specific
measurement result (“¢”) for certain. This claim is never true for a mixed state p: if

we measure p in any orthonormal basis, the measurement result is always uncertain.

1.3.1 Quantum Operations on Mixed States

Two important results (that can be mathematically proved) are:

e If we measure a mixed state p in some orthonormal basis {|¢1), [¥2), ..., [¥m)},

we get the measurement result “¢;” with probability p; = (5] p [¢5).

o If we apply a unitary operator U to a mixed state p, the resulting state is the
mixed state UpUT.

1.3.2 Partial Trace: Removing (Ignoring and Forgetting) a Subsystem

Sometimes, we would like to compute the quantum state of a specific subsystem, while
ignoring and forgetting the other subsystems. For example, given a tripartite quantum
state papg (shared by three parties named Alice (A), Bob (B), and Eve (E)), we may
want to ignore the two subsystems A, B and look only at the state of Eve’s subsystem E.
In other words, we may want to assume that subsystems A, B will never be accessible
to Eve (maybe they will be measured by Alice and Bob, who will then forget the
measurement results or keep them secret) and find the state pg of subsystem E.

The mathematical operation corresponding to this scenario is the partial trace. The

partial trace of a bipartite state pxy over subsystem X is defined as follows:

py = trx(pxy) £ Y (z]pxy |z), (1.14)
|lzyex

where X’ is an arbitrary orthonormal basis of the Hilbert space Hx corresponding to
subsystem X. The result of this computation is the quantum state py of subsystem Y.

In the above example, the partial trace of pagg over subsystems A, B is:

pr =trap(pase) = Y (al (b paE|a) [b), (1.15)
la)eA,[b)eB
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where A, B are some arbitrary orthonormal bases of the Hilbert spaces Ha, Hp corre-
sponding to subsystems A, B.
For example, the partial trace of the two-qubit pure state |)xy = \/g]o>x|—)y +

\/g|l>x‘+>y over subsystem X is

pv = trx((hxy (Wloy) = gl-v(—ly + 51 [+, (1.16)

and the partial trace of the same state |))xy over subsystem Y is

px = try () xv (W) = glo)x ol + 2 1x{alx. (1.17)

More details about the partial trace are available in standard QIP textbooks (e.g., [NC00]).

1.4 List of Allowed Quantum Operations

1. measuring the state with respect to an orthonormal basis (Subsection 1.1.1);
2. applying a unitary operator (Subsection 1.1.2);
3. adding a new (ancillary) subsystem; and

4. removing (ignoring and forgetting) a subsystem (Subsection 1.3.2).

1.5 Trace Distance

The trace distance between two quantum states is, informally, a measure of their
distinguishability. This measure is very useful for security definitions of quantum key
distribution protocols (see details in Subsection 2.3.1).

The trace distance of two states p and o is defined as follows:
Al 1
D(p.o) £ Strlp—ol =5 > I\, (1.18)
J

where {\;}; are the eigenvalues of p — o, all of which are real numbers. (We note that
|A| is defined as VATA.) In other words, the trace distance D(p, o) is one half of the

sum of absolute values of the eigenvalues of p — o.

1.5.1 The Information-Theoretical Meaning of the Trace Distance

It can be proved [FvdG99, BBBGMO02| that the trace distance D(p, o) between two
quantum states p and ¢ upper-bounds the Shannon Distinguishability between p and o.
The Shannon Distinguishability is defined as the classical mutual information between

0 The quantum state is p

the random variable T' £ and the random variable X (the

1 The quantum state is o



result of a measurement), maximized over all possible quantum measurements (including
measurements consisting of adding an ancillary state, performing a general unitary
transformation, and then measuring in some orthonormal basis).

In other words, the trace distance upper-bounds the information that some user,
who holds a quantum state and does not know whether it is p or o (it can be either p
or o, with equal probabilities), can find by using a measurement.

Examples:

e D(|o){(o|,[1)(1]) = 1, because the two quantum states |0) and |1) can be distin-

guished for certain by measuring in the z basis {|o),|1)}.

e D(]o){o[,]0)(o]) = 0, because the two quantum state |0) and |o) are identical, so

they cannot be distinguished from each other at all.
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Chapter 2

Introduction to Quantum Key

Distribution

The properties of quantum mechanics permit cryptographic protocols that are more
secure than standard (“classical” or “non-quantum”) protocols. Quantum key distribu-
tion (QKD) protocols allow two users, conventionally named Alice and Bob, to generate
a secret shared key. This thesis is devoted to studying security properties of QKD
protocols.

In this chapter, we describe relevant existing knowledge in the research field of QKD.
In particular, we discuss security definitions of QKD and the notion of semiquantum
key distribution (SQKD) protocols.

2.1 DMotivation: Unsolved Encryption Problems in a Non-
Quantum World

Cryptography is the science of protecting security and correctness of data against
adversaries. One of the most important cryptographic problems is encryption—namely,
transmitting a secret message from a sender (Alice) to a receiver (Bob), and ensuring

the adversary (Eve) cannot read it. Two main encryption methods are used today:

o Symmetric-key cryptography, in which the same secret key is used by both Alice
and Bob: Alice uses the secret key for encrypting her message, and Bob uses the
same secret key for decrypting the message. Several examples of symmetric-key
ciphers are the Advanced Encryption Standard (AES) [DR13], the older Data
Encryption Standard (DES), and one-time pad (“Vernam cipher”).

e Public-key cryptography [DHT76], in which a public key (known to everyone) and
a secret key (known only to Bob) are used: Alice uses the public key for en-
crypting her message, and Bob uses the secret key for decrypting the message.

Several examples of public-key ciphers include RSA [RSA78] and elliptic curve
cryptography.
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However:

e Current public-key cryptography is not formally proved secure; moreover, its
security is only computational—namely, it relies on computational hardness of spe-
cific problems, such as integer factorization and discrete logarithm. Furthermore,
factorization and discrete logarithm can both be efficiently solved on a quantum
computer by using Shor’s factorization algorithm [Sho94, Sho99]; therefore, if a
scalable quantum computer is successfully built in the future, it will break security

of many public-key ciphers, including RSA and elliptic curve cryptography.

e Symmetric-key cryptography requires Alice and Bob to share a secret key in
advance: namely, if Alice and Bob want to share a secret message, they must
share a secret key beforehand. Moreover, no computational security proofs are
known for many current symmetric-key ciphers, including AES and DES; and
unconditional security against computationally-unlimited adversaries has been
proved to require many resources: the secret key must be used only once and be

at least as long as the secret message [Sha49].

Nonetheless, there exist ciphers that are fully and unconditionally secure (even against
computationally-unlimited adversaries). For example, the one-time pad (symmetric-
key) cipher is defined as follows: given a message M and a secret key K of the same
length, the encrypted message C is computed as the XOR between M and K—namely,
C = M @ K (decryption can then be performed by computing M = C @ K). One-time
pad has been proved fully and unconditionally secure against any adversary [Sha49]:
even if the adversary Eve intercepts the encrypted message C, she gains no information
on the original message M (assuming she has no information on the secret key K; in
particular, assuming K is used only once).

Therefore, for achieving perfectly secure encryption, we only need an efficient way for
sharing a random secret key between Alice and Bob—a task named “key distribution”.
Unfortunately, unconditionally secure “classical [non-quantum] key distribution” is
impossible if the computationally-unlimited adversary can listen to all communication

between Alice and Bob. Fortunately, quantum key distribution can solve this problem.

2.2 Quantum Key Distribution

Quantum key distribution (QKD) protocols allow Alice and Bob to generate a shared
random key. Typically, they require Alice and Bob to use two communication channels:
(a) an insecure quantum channel (to which Eve may apply any operation allowed by
the laws of quantum physics), and (b) an unjammable classical channel (to which Eve
may listen, but not interfere). Eve listens to both channels and tries obtaining as much
information as she can on the final shared key.

For most QKD protocols, the final key is proved to be secret even from the most

powerful adversaries—adversaries who are limited only by the laws of nature and
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who are otherwise capable of solving any computational problem and performing any
physically-allowed operation. Moreover, the final key is proved to remain secret in the
future, even if Eve improves her computational power and other capabilities.

After creating the shared key, Alice and Bob can use it for other cryptographic
tasks (e.g., one-time pad encryption). More generally, QKD protocols can be used as a
subroutine (secure key distribution) of more complicated cryptographic protocols; in
other words, we can integrate QKD into a system to improve its security. See [SML10]
for more details about this integration and the practical usability of QKD compared to
other methods.

2.2.1 The QKD Protocol of Bennett and Brassard (BB84)

The first and most important QKD protocol, suggested by Bennett and Brassard in
1984, is BB84 [BB8&4].

In the BB84 protocol, in each round, Alice randomly chooses one of the four possible
“BB84 (qubit) states” {|o),|1),|+),|—)} and sends it to Bob. Bob randomly chooses one
of two orthonormal bases (z or z, both defined in Section 1.1) and measures the state
in his chosen basis. If Bob chooses the same basis as Alice (assuming that Eve did not
interfere), Bob will get the same result as Alice; and if Bob chooses a different basis
from Alice (assuming, again, that Eve did not interfere), Bob will get a random result
(each result with probability %) For example, if Alice sends |[4+) and Bob measures it in
the x basis, he will get the “+” result for certain; but if Bob measures it in the z basis,
he will get a random result (either “0” or “17).

After sending and receiving N qubits (in N rounds), Alice and Bob perform “classical
post-processing” (namely, they process their results in a coordinated way, exchanging

information via the unjammable classical channel), comprised of the following steps:

1. Alice and Bob expose and compare the bases they chose and discard the qubits
for which they chose different bases.

2. Alice and Bob expose and compare a randomly chosen subset of their bits (named
“the TEST bits”), check the error rate in this subset, and abort the protocol if the

error rate is above a specific threshold. The remaining bits are “the INFO bits”.

3. Alice and Bob perform error correction and privacy amplification processes on the
INFO bits, so that both of them have the same bit string (the final key) and Eve’s

average information about it is negligible—namely, exponentially small in N.

Full definitions of BB84 and several variants are available in Sections 6.2 and 7.1.

2.2.2 Types of QKD Protocols

Many QKD protocols have been suggested over the years. We should note three

important classifications:
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1. BB84 and similar protocols are “prepare-and-measure” protocols, because the
legitimate parties prepare quantum states, transmit them, and measure them.
In contrast, in “entanglement-based” QKD protocols, an untrusted center gives
the legitimate parties allegedly-entangled quantum states (see Subsection 1.2.2),
and the legitimate parties test them and use them for generating a secret key.
“Entanglement-based” protocols were first discussed by [Eke91, BBM92], and they

are usually almost equivalent to “prepare-and-measure” protocols [BBM92].

2. BB84 and similar protocols are “one-way” protocols, because each quantum state
travels once from one legitimate party to the other—for example, from Alice to
Bob. In contrast, “two-way” protocols [BLMR13] require each quantum state
to travel twice between the legitimate parties—for example, from Bob to Alice
and back to Bob; examples of two-way protocols include the semiquantum key

distribution protocols discussed in Section 2.4 and Chapters 3-5.

3. All QKD protocols discussed in this thesis are “discrete-variable” protocols,
because they use finite-dimensional Hilbert spaces (or, more generally, discrete
random variables). In contrast, “continuous-variable” QKD protocols use different
techniques; see [SBPCDLP09, XMZLP20, PAB*20] for more details.

2.3 Security and Robustness of QKD

2.3.1 Security Definitions and Composable Security

The main objective of analyzing a QKD protocol is proving its unconditional security:
proving that even if Eve applies the strongest and most general attacks allowed by the
laws of nature (named the “joint attacks”), Eve’s average information about the final
key is still negligible—namely, exponentially small in the number of rounds.

Originally, a QKD protocol was defined “secure” if the (classical) average mutual
information between Eve’s final measurement result (E) and Alice’s and Bob’s final
shared key (K)!', maximized over all possible attack strategies and measurements
by Eve, was exponentially small in the number of rounds N. Examples of BB84
security proofs based on this security definition include [May01l, BBBMRO06, SP00]:
these security proofs recognized that one cannot analyze the classical data held by
Eve before privacy amplification (as was done in [BBCM95]), but must analyze Eve’s
quantum state [BMS96]. In other words, they assumed Eve could keep her quantum
state until the end of the protocol, and only then choose the optimal measurement
(based on all the data she observed) and perform this measurement.

Later, it was noticed that this security definition might not be “composable”. In

other words, although the final key itself is secure if Eve measures the quantum state

More precisely, the security definition referred to Alice’s final key (A), and a separate condition
(reliability) required Bob’s final key to be identical to Alice’s final key, except with negligible probability.
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she holds at the end of the QKD protocol, the proof does not apply to cryptographic
applications of the final key (e.g., encryption): Eve may gain non-negligible information
after the key is used, even though her information on the key itself was negligible.
This means that the above definition is not sufficient for practical applications: such
applications may be insecure if Eve keeps her quantum state until Alice and Bob use
the final key (thus giving Eve some new information) and only then measures.

Therefore, a new notion of “(composable) full security” was defined [BOHLMOO05,
RGKO05, Ren08], following similar definitions of universally composable security in non-
quantum cryptography [Can01, PWO00], and using the trace distance (see Section 1.5).
Intuitively, this notion requires that the final joint quantum state of Alice, Bob, and Eve
generated by the QKD protocol is very close (namely, the trace distance is exponentially
small in V) to the final state generated by an ideal key distribution protocol which
distributes a completely random and secret final key to both Alice and Bob. In other
words, if a QKD protocol is (composably) secure, then except with an exponentially
small probability, one of the two following events happens: the QKD protocol is aborted,
or the QKD protocol generates a secret key with the same properties as a perfect key—
(a) uniformly distributed (i.e., each possible key has the same probability), (b) identical
for Alice and Bob, and (c) independent of Eve’s information.

Formally:

e papE is defined as the final quantum state of Alice, Bob, and Eve at the end of
the protocol: Alice’s and Bob’s quantum states are simply the “classical” states
|ka)a, |kB)B, where the bit strings ka, kp are the final keys held by Alice and
Bob, respectively (ideally, ko = kp); and Eve’s state includes both her quantum

ancillary state and the classical information sent over the classical channel.

e py is defined as the complete mixture of all possible final keys that are identical
for Alice and Bob. Namely, if the set of possible final keys is K, then:
a 1

pu L == > |k)alk)s (ks (klg. (2.1)
e e

e pp is defined as the partial trace of papg over the system AB; the definition of

the partial trace is available in Subsection 1.3.2.

For the QKD protocol to be fully (composably) secure, the definition requires the

following trace distance (see Section 1.5) to satisfy

1
5 tr|paBE — pU @ pE| <€, (2.2)

where € is exponentially small in the number of rounds N. Intuitively, papg is the
actual joint state of Alice, Bob, and Eve at the end of the QKD protocol; py is the ideal

final state of Alice and Bob (an equal mixture of all possible final keys, that is identical
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for Alice and Bob and completely uncorrelated with Eve); and pg is the state of Eve,
uncorrelated with the states of Alice and Bob. Note that cases where the protocol is
aborted are represented by the zero operator: see [Ren08, Subsection 6.1.2] for details.

We note that non-composable security does not imply composable security: in
an example found by [KRBMO7], the final key satisfied the non-composable security
definition, but it could not be securely used even for the one-time pad encryption scheme
described in Section 2.1. However, it was shown by [BOHLMOO5] that if the mutual
information (used in the non-composable security definition) is bounded by g2, and the
final key is uniformly random and identical for Alice and Bob except with probability
%, then the trace distance (used in the composable security definition) can be bounded
by 2max(m)/ 2\/172 + w1 (where max(m) is the maximal length of the final key given the
number of rounds N).

Using this general bound of [BOHLMOO5], if u9 is exponentially small in the final
key length m and the exponential decay is sufficiently fast, composable security can
sometimes be proved; however, this general bound sometimes does not imply composable
security, and it is usually non-tight: better bounds can usually be directly found for
special cases, similarly to the other bounds suggested by [BOHLMOO05] and to the bounds
found in Chapters 6 and 7. (We note that the results of [ KRBMO07] and [BOHLMOO5] are
consistent with each other: in the example given by [KRBMO07], the mutual information
is exponentially small in m, while the trace distance is constant, and [BOHLMOO05]’s
non-tight upper bound on the trace distance grows exponentially with m.)

Composable security proofs have been presented for many QKD protocols, including
BB84 [RGKO05, Ren08].

2.3.2 Collective, “Uniform Collective”, and Joint Attacks

Our ultimate objective is proving security of QKD against the most general attacks Eve
can possibly apply. However, the most general attacks can be very complicated, so we
usually first analyze an important and powerful subclass of attacks named the “collective
attacks” [BM97b, BM97a, BBBGMO02]. It is sometimes easier to prove security against
collective attacks than security against the most general attacks; moreover, security
against collective attacks is conjectured (and, in some security notions, proved [Ren08,
CKRO09]) to imply security against the most general attacks.

Intuitively, in a collective attack, Eve begins by attacking each round separately,
and she uses a separate probe state (ancillary state) for each round. These probe states
cannot be entangled or correlated with each other, but Eve can keep them in a quantum
memory. Later, after Alice and Bob have completed classical post-processing, Eve can
measure all her probe states together in the optimal way. A formal description of the
collective attacks against BB84-like protocols is available in Subsection 6.3.1.

The definition of the “collective attacks” is slightly different in some papers (most
notably, [Ren08, RGK05, CKR09]): these papers require Eve not only to attack the
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rounds separately and independently, but they also require her to attack them identically
(namely, she must apply the same operation in each round). To avoid confusion, we call
this specific type of collective attacks “uniform collective attacks”.

The class of the “joint attacks” includes all theoretical attacks allowed by quantum
physics (namely, these are the most general attacks). A formal description of the joint

attacks against BB84-like protocols is available in Subsection 7.2.2.

2.3.3 Different Approaches for Security Proofs
We discuss four different approaches for proving unconditional security of QKD protocols:

1. The approach of Mayers [May01] gave the first security proof of a QKD protocol
(BB84). This approach proves non-composable security against the most general

theoretical attacks.

2. The approach of Biham, Boyer, Boykin, Mor, and Roychowdhury (BBBMR)
[BBBMRO06] (which follows previous works by similar authors [BM97b, BM97a,
BBBGMO02]) proves security of BB84 by connecting the information Eve obtains
and the disturbance she induces in the opposite (conjugate) basis (see Subsec-
tion 7.2.4). This proof algebraically bounds the trace distance between two possible
density matrices held by Eve, and it proves non-composable security against the
most general theoretical attacks. In Chapter 7 we adapt this approach to prove

composable security.

Security against collective attacks was proved using similar techniques [BBBGM02]

that were later improved [BGMO09]; in Chapter 6 we make this proof composable.

3. The approach of Shor and Preskill [SP00] proves security of BB84 by analyzing a
different, entanglement-based protocol (see Subsection 2.2.2). This protocol uses
quantum error correction and entanglement purification, so it requires Alice and
Bob to use a quantum computer (unlike BB84); it was earlier proved secure by Lo
and Chau [LC99], and then Shor and Preskill [SP00] proved it equivalent to BB84,
implying security of BB84. This approach proves non-composable security against
the most general theoretical attacks, but later work [BOHLMOO05, KRBMO07]

showed it could be easily modified to prove composable security.

4. The approach of Renner [RGKO05, Ren08| proves security of various QKD protocols
by bounding entropies, min-entropies, and max-entropies appearing in the proto-
cols, and it uses reductions from standard prepare-and-measure QKD protocols to
entanglement-based QKD protocols. This approach proves composable security

against the most general theoretical attacks.

In Chapters 6 and 7 of this thesis, we strengthen BBBMR’s security approach [BBBMRO6,
BGMO09] by making it prove composable security. This security approach has various

advantages and disadvantages compared to other approaches. On the one hand, it is
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mostly self-contained, while other security approaches require many results from other
areas of quantum information (such as various notions of entropy needed for Renner’s
approach, and entanglement purification and quantum error correction needed for Shor
and Preskill’s approach); it gives tight finite-key bounds, unlike several other methods
(as detailed below); and, at least in some sense, it is simpler than other proof techniques.
On the other hand, it is currently limited to BB84-like protocols.

BBBMR’s approach gives explicit and tight finite-key bounds. In contrast to this,
Shor and Preskill’s approach proves only asymptotic security (for infinitely long keys).
For Renner’s approach, tight finite-key bounds identical to the ones found by BBBMR’s
approach have been obtained for several protocols, including BB84 [TLGR12]; but at
first Renner’s approach gave very pessimistic bounds (using de Finetti’s theorem [Ren08,
Ren07)); later, the bounds were improved for several protocols, including BB84 [SR0S];
and finally, tight bounds have been obtained (see [TLGR12] for comparison).

We note that existence of many different proof techniques is important, because
some proofs may be more adjustable to various QKD protocols or practical scenarios;
some proofs may be clearer to different readers with different backgrounds; analyzing the
differences between the proofs and between their obtained results may lead to important
insights on the strengths and weaknesses of various techniques; and existence of many

proofs makes the security result more certain and less prone to errors.

2.3.4 Robustness Definitions of QKD

A notion much weaker than security is the robustness of a QKD protocol [BKMO07]. A
QKD protocol is completely robust if any non-zero information obtained by Eve on the
INFO string implies a non-zero probability that Alice and Bob find errors in the TEST
bits. In other words, if a protocol is completely robust, Eve cannot obtain any useful
information without causing errors that may be noticed by Alice and Bob. Robustness
does not imply full security (it does not imply secrecy of Alice and Bob’s final key after
classical post-processing), but it is an important step towards proving security.

To the other extreme, complete non-robustness means Eve can get full information
without inducing even one error. The two practical attacks described in Subsection 2.5.3

imply their respective protocols to be completely non-robust.

2.4 Semiquantum Key Distribution

Semiquantum key distribution (SQKD) protocols assume either Alice or Bob is a classical
party [BKMO7]. Therefore, these protocols answer a theoretically interesting question:
“how quantum” must a QKD protocol be to achieve secure key distribution? We already
know fully classical key distribution is impossible (see Section 2.1), and we know fully
quantum key distribution is possible; the existence of SQKD protocols can show that

key distribution remains feasible even if one party is classical. Furthermore, SQKD
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protocols may be easier to implement, so they may also have practical importance.

In SQKD protocols, the classical party can only use “classical” operations—and,
in particular, it can prepare states and perform measurements only in the z basis and
not in the x basis. For example, consider a practical implementation where |0) and
|1) represent two different pulses traveling through the same path one after the other:
in this case, the z basis {|0),|1)} represents classical photon pulses, while the x basis
{|4),|—)} represents quantum superpositions of classical pulses. The classical party can

manipulate classical photon pulses in the z basis, but cannot manipulate superpositions.

The first SQKD protocol was named “QKD with Classical Bob” [BKM07, BGKMO09].
In this protocol, in each round, Alice sends to Bob a randomly chosen state of the four
BB84 states {|0),|1),|+),|—)}, but Bob is limited to two “classical” operations:

1. CTRL: Bob returns the qubit to Alice undisturbed.

2. SIFT: Bob measures the qubit in the z basis and resends to Alice the qubit state

he measured.

Bob randomly chooses one of these operations, and Alice measures the returning qubit
in the basis she sent it. After N qubits have been sent and received (in N rounds),
Alice publicly announces her basis choices for each round, and Bob publicly announces
his choices (CTRL or SIFT) for each round. Then, Alice and Bob check the error rates
in the CTRL bits and in a random subset of the SIFT bits, aborting if they are too
high. Finally, Alice and Bob perform error correction and privacy amplification on the
remaining SIFT bits sent by Alice in the 2z basis, so that they have an identical final key
that is completely secret. We note that only SIFT bits are used for generating the final
key; CTRL bits are used only for security checks. This protocol was proved completely
robust [BKMO7] and secure [Kralbb].

Later, [ZQLWLO09] suggested a simpler SQKD protocol named “QKD with Classical
Alice” (the name is following [BM11]). In this protocol, in each round, Bob sends to
Alice the |+) state, and Alice randomly chooses one of the two “classical” operations
(CTRL or SIFT) and returns the resulting state to Bob. Bob then measures the
received qubit in a randomly chosen basis (z or z), and Alice and Bob proceed almost
identically to “QKD with Classical Bob”. This protocol was proved completely robust
by [BM11], and the proof was extended by [BM10] to include photonic implementations

and multi-photon pulses.

Other SQKD protocols have also been suggested, including [LC08, SDL13, YYLH14,
Kralba, ZQZM15]; note that most SQKD protocols are required to be two-way protocols
(see Subsection 2.2.2) to overcome the limitations of the classical user. Most SQKD

protocols have been proven robust, and a few of them also have security analyses [Kral5b,
Kral6, ZQM18, Kralg].
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2.5 Practical Implementations of QKD Protocols

2.5.1 The Fock Space Notations

Quantum cryptographic protocols are usually implemented with photons. However,
standard qubit notations do not describe all possible photon operations and do not
properly represent the actual operations of Alice and Bob; as a result, qubit notations
do not cover all possible attacks. To correct notations, we must replace the qubit Hilbert

space Ha = Span{|o), |1)} by an extended Hilbert space—the “Fock space” F:

e In the simplest case, there are m > 0 photons, all of them belonging to one
photonic mode. Here, the Fock state |m) represents m photons in this single mode:
|0) is the vacuum state, representing no photons in that mode; |1) represents one

photon in that mode; |2) represents two photons in that mode; and so on.

e For describing several different pulses of photons (for example, photons traveling
through different paths or at different times, or any other external degree of free-
dom), we need several photonic modes. For example, a single photon in one of two
pulses (and, thus, in one of two modes) describes one qubit, and the z basis states
of this qubit are {|o) =[0) ® [1) =|0)|1) , |1) = |1) ®|0) = [1)|0)}. (These two
states are mathematically described as tensor products, but we omit the ® sign for

brevity.) A linear combination describes one photon in a superposition of the two
_ 10)[1)+[1)]0) ) = |0>|1>—\1>|0>}
7 .

pulses: for example, the x basis states are {|—i—) 72 )

e More generally, for describing m = my + mg photons in two different pulses (two
modes), where m; photons are in one pulse and mg photons are in the other pulse,
we write |m1)|mg). We add subscripts to specify the type of pulse—for example,
|mi)e, |mo)e, for the two times 1, %0, or [m1)a|mo)p for the two paths A, B.

e For describing more than two pulses (more than two modes), we use generalized
notations: for example, m = mo 4+ m1 + mg photons traveling at times to, t1, tg are
denoted |ma)¢,|mi1)t, |mo)t,- In particular, the vacuum state (absence of photons)
is denoted |0) for one mode, |0)|0) for two modes, |0)|0)|0) for three modes, etc.

All the above notations assume identical photon polarizations (which are an internal
degree of freedom) for all m photons. However, a single photon in a single pulse generally
has two orthogonal polarizations: horizontal <+ and vertical J. The two polarizations
are described as two modes for each pulse, so k pulses mean 2k modes.

In this thesis (except Chapters 3-5, for the reasons explained in Section 3.2),
polarization modes of m = mj +myg photons are denoted |my, mg) without any subscript,

while pulse modes are denoted |m1)|mg) with subscripts. Thus:

e If there is exactly one photon in a single pulse, its two polarization modes represent

one qubit. The z basis states of this qubit are |o) = |0, 1) (representing one photon
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in the horizontal polarization mode and zero photons in the vertical polarization

mode) and |1) = |1,0) (where the single photon is in the vertical mode).

e A linear combination describes one photon in a superposition of those two polariza-
= 0DHL0) 1y 01)-]10) }

tion modes: for example, the z basis states are {H—) = =7 7
e The |mi,mg) state represents m = mj + mg photons in those two polarization
modes: m; photons in the vertical mode and mg photons in the horizontal mode.

In particular, the vacuum state |0,0) represents an absence of any photon.

Formally, for two polarization modes, the entire 2-mode Fock space is:
F £ Span{|m1,mg) | m1 >0, mg >0}, (2.3)

where the |m1, mg) state represents m; indistinguishable photons in the |1) mode and
my indistinguishable photons in the |o) mode.

Similarly, a single photon in the |[4+) mode may be written as |0, 1), and a single
photon in the |—) mode may be written as |1,0)x. The entire 2-mode Fock space can

be represented as
F =Span{|m_,my)x | m_ >0, my >0}, (2.4)

where the [m_, my)x state represents m_ indistinguishable photons in the |—) mode

and m indistinguishable photons in the |+) mode.

2.5.2 Experimental Implementations of Polarization-Based QKD

The BB84 protocol may be experimentally implemented in a “polarization-based” im-
plementation, that we can model as follows: the quantum particles sent by Alice to Bob
are single photons whose polarizations encode the quantum states. The four possible
states sent by Alice are |0), 1), |[+), and |—), where |o) = |<+) (a single photon in the
horizontal polarization) and |1) = |]) (a single photon in the vertical polarization). The
|+) = |/ and |—) = |[N) states correspond to orthogonal diagonal polarizations.

For measuring the incoming photons, Bob uses a polarizing beam splitter (PBS) and
two detectors. Bob actively configures the PBS for choosing his random measurement
basis (z or x). If the PBS is configured for measurement in the z basis, it sends any
horizontally polarized photon to one path and any wertically polarized photon to the
other path. At the end of each path we place a detector, which clicks whenever it detects
a photon. Therefore, the detector at the first path clicks only if the |o) mode is detected,
and the detector at the second path clicks only if the |1) mode is detected; a diagonally
polarized photon (|+) = |/*) or |—) = |N,)) would cause exactly one of the detectors
(uniformly random) to click. Similarly, if the PBS is configured for measurement in the

x basis, it distinguishes |+) from |—). This implementation (using an “active” basis
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choice) may be slow, because Bob needs to randomly choose a basis for each arriving

photon.

A variant of this implementation uses a “passive” basis choice (e.g., [KZH102]). This
variant uses one polarization-independent beam splitter, two PBSs, and four detectors.
The polarization-independent beam splitter is placed in the front, and it randomly
sends each photon to one path or to another. A photon going to the first path is then
measured (as described above) in the z basis, while a photon going to the second path
is measured (as described above) in the x basis. We note that in this “passive” variant,
the basis is chosen “randomly” by the polarization-independent beam splitter, and Bob
does not have to actively choose it; however, it is exposed to the “Fixed Apparatus”
attack [BGM14] (see Example 3 of Section 8.4).

The above implementations of QKD are further discussed in Chapter 8.

2.5.3 Practical Attacks

The security promises of QKD are true in theory, but its practical security is far
from being guaranteed: practical implementations of QKD use realistic photons, so
they deviate from the theoretical protocols based on ideal qubits. These deviations
make possible various attacks (see [LCT14, SBPCDLP09]), similarly to the idea of

“side-channel attacks” in classical computer security.

For example, in the “Photon-Number Splitting” attack [BLMS00] (which assumes the
QKD system is implemented using photons, and assumes the quantum state sent by Alice
should be a single photon), Eve exploits two facts: (a) in most implementations, Alice
sometimes sends to Bob more than one photon (e.g., two photons); and (b) Bob usually
cannot count the number of photons he measures. Thus, for any pulse consisting of two
or more photons, Eve “steals” one of the photons and keeps it in her quantum memory
for a later measurement (after Alice and Bob expose the correct bases), obtaining full

information without being noticed; and she blocks all single-photon pulses.

Another example is the “Bright Illumination” practical attack [LWWESM10]: this
attack uses a weakness of Bob’s measurement devices, allowing Eve to “blind” them
and fully control Bob’s measurement results (full description is available in Section 8.3).
Eve can then get full information on the secret key without inducing any error. An

extensive discussion of this attack is available in Chapter 8.

Possible solutions to these problems include: (a) a much more careful analysis of
practical devices and practical implementations; (b) “Measurement-Device Independent”
QKD protocols [BHM96, Ina02, LCQ12, BP12], which may be secure even if the
measurement devices are controlled by Eve; and (¢) “Fully Device Independent” QKD
protocols [MY98, MAP11, VV14], which may be secure even if all quantum devices are

untrusted (under certain assumptions).
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2.6 Hoeffding’s Theorem

The final stages of our security proofs in Chapters 6 and 7 consist mainly of applications

of the following Theorem, proven by Hoeffding in [Hoe63, Section 6]:

Theorem 2.1 (Hoeffding’s Theorem). Let Xi,..., X, be a random sample without
replacement taken from a population ci,...,cn such that a < c; <b forall1 <j < N.
(That is, each X; gets the value of a random cj, such that the same j is never chosen
for two different variables X;, Xy.) If X = % and u = E[X] is the expected
value of X, then:

1. For any € > 0,
2ne?

Pr(X —pu>e <e -7, (2.5)

2. u = %Zf\; ¢;. Namely, the expected value of X is the average value of the

population.

The following Corollary of Hoeffding’s theorem is useful for proving security:

Corollary 2.2. Let us be given an (n + n')-bit string ¢ = ¢1...¢hip, and assume
that we randomly and uniformly choose a partition of c into two substrings, ca of
length n and cp of length n’. (Formally, this is a random partition of the index set
{1,...,n 4+ n'} into two disjoint sets, A and B, satisfying |A| = n, |B| = n’, and
AUB={1,...,n+n'}.) Then, for any p >0 and € > 0,

7 2
o K'?f' >p+€> : <|(ff| Spﬂ < 2] e (2.0

where Cp and Cg are random variables whose values equal to cp and cg, respectively.

Proof. The random and uniform partition of ¢ into two substrings, ca of length n and
cg of length n’, is actually a sample of size n without replacement from the population
Cly- -y Cnins € {0,1}. (The sampled n bits are the bits of ca, while the other n’ bits
are the bits of cg.) Therefore, we can apply Hoeffding’s theorem (Theorem 2.1) to this
sampling.

Let X be the average of the sample, and let 4 be the expected value of X (so,

according to Theorem 2.1, p is the average value of the population), then

— |Cal
X = =21 2.7
) (2.7
Cal+|CB
o ST (29
O

Then K:L—]?‘ < p is equivalent to (n +n/)u —nX < n’-p, and, therefore, to n - (X — u) >
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|Cs|

n/ —

n’ - (i — p). This means that the conditions (% >p+ e) and < p) rewrite to

(Y—u>6+p—M)A<%-(Y—M)Zu—p), (2.9)

which implies (1+ %) (X — p) > ¢, which is equivalent to X — p > ni,n,e. Using

Hoeffding’s theorem (Theorem 2.1), we get

C C — ! o) e
Pr M>p+€ A @Sp SPI‘ X—N> n el <e 2<n+n’) ne'
n n' n+n
(2.10)

Using Corollary 2.2 for comparing the error rates in different sets of qubits (e.g.,
INFO and TEST bits) is allowed, on the condition that the random and uniform
sampling occurs only after the qubits are sent by Alice and measured by Bob. In other
words, the sampling cannot affect the bases in which the qubits are sent and measured,
and it cannot affect Eve’s attack.

Similar uses of Hoeffding’s theorem for proving security of QKD are available
in [BBBMR06, BGMO09).

We also use another Theorem, proven by Hoeffding in [Hoe63, Section 2, Theorem 1]:

Theorem 2.3. Let X1,..., Xy be independent random variables with finite first and
second moments, such that 0 < X; < 1 for all1 < i < N. If X £ X1+7N+XN and
p = E[X] is the expected value of X, then for any ¢ > 0,

2

PrX —pu>e <e Ve, (2.11)
and, in a similar way (see [Hoe63, Section 1]),
Prip—X>¢ < g2V (2.12)

We will use the following Corollary of Theorem 2.3 for proving security of the
“efficient BB84” protocol in Subsection 7.3.3:

Corollary 2.4. Let 0 < p < 1 be a parameter, and let b = by ...by be an N-bit
string, such that each b; is chosen probabilistically and independently out of {0,1}, with
Pr(b; =0) =p and Pr(b; =1) =1 —p. Then:

Pr (,bg(l—;’)N> < e INOP?, (2.13)
Pr<b|<pév> < e 2V (2.14)

Proof. Let us define X; = b; for all 1 < ¢ < N. Then X; are independent random
variables with finite first and second moments, such that 0 < X; <1 forall1 <i< N
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and = E[X] = 1 — p. Therefore, using Theorem 2.3, we get the two following results:

Pr [(1 —p)—X > 15} < emaNO-p)? (2.15)
Pr [Y —(1-p)> g} < e3P (2.16)

We notice that X = % =1- le\),'. Substituting this result, we get
Pr {—'Z’ > —12”] < e aNO-P)?, (2.17)
Pr [1 - “;’ —1> —g] < e 2N (2.18)

and, therefore,

Pr [|b] < (1_217)]\7} < e 3NO-P? (2.19)
Pr [|b| < pﬂ < 2P (2.20)
O

2.7 Notation for Bit Strings

In this thesis, we denote bit strings (of ¢ bits, where ¢ > 0 is some integer) by a bold
letter (e.g., i = i1...4;, where i1,...,i; € {0,1}); and we refer to these bit strings
as elements of Fi—that is, as elements of a t-dimensional vector space over the field
Fy = {0,1}, where addition of two vectors corresponds to a XOR operation between
them. The number of 1-bits in a bit string s is denoted by |s|, and the Hamming

distance between two strings s and s’ is dy(s,s’) = |s @ §/|.

2.8 Structure of this Thesis

First, we discuss a new semiquantum key distribution protocol (the “Mirror protocol”)

that solves a practical security problem:

e In Chapter 3, we present the Mirror protocol and prove it completely robust.
This chapter is based on a 2017 paper we published in Physical Review A [BKLM17].

e In Chapter 4, we discuss a simplified variant of the Mirror protocol and present
several attacks against it, proving this variant to be non-robust.
This chapter is based on a 2018 paper we published in Entropy [BLM18].

e In Chapter 5, we prove security of the Mirror protocol against “uniform collective”
attacks (defined in Subsection 2.3.2).
This chapter is based on a 2020 preprint we posted to the arXiv [KLM20].
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Then, we discuss composable security of generalized BB84 protocols:

e In Chapter 6, we extend [BBBGMO02, BGMO09] to prove fully composable security
of a variant of BB84 (named “BB84-INFO-z”) against collective attacks.
This chapter is based on a 2020 paper we published in Theoretical Computer
Science [BLM20].

e In Chapter 7, we extend [BBBMRO6] to prove fully composable security of several

variants of BB84 against the most general attacks.

Finally, in Chapter 8, we explain how the practical “Bright Illumination” attack [LWWESM10]
can be described as a theoretical “Reversed-Space” attack.
This chapter is based on a 2020 paper we published in the TPNC conference [LM20].
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Chapter 3

The Mirror Protocol and

Robustness Proof

In this chapter, we present an experimental security problem of the currently existing
SQKD protocols. To solve this problem, we suggest a new SQKD protocol (the “Mirror
protocol”) and prove it completely robust.

This chapter is based on a paper published in Physical Review A in 2017 by Michel
Boyer, Matty Katz, Rotem Liss, and Tal Mor [BKLM17].

3.1 Experimental Infeasibility of the SIFT Operation in
SQKD Protocols

In the currently existing SQKD protocols (see Section 2.4), one of the “classical”
operations is SIFT: measuring in the z basis {|0), |1)} and then resending. In practical
(photonic) implementations, and especially if limited to the existing technology, the
SIFT operation is very hard to securely implement, because the generated photon
will probably be at a different timing or frequency, thus leaking information to the
eavesdropper; see details in [TLCO09] (which is a comment on [BKMO7]) and in the
reply [BKMO09].

For example, let us look at the “QKD with classical Alice” protocol implemented
with two classical modes, |0) and |1), describing two pulses (two distinct time-bins) on a
single arm. The photon can be either in one pulse, in the other, or in a superposition (a
non-classical state). In this case, the SIFT operation requires Alice to measure the two
pulses, generate a single photon in a state depending on the measurement outcome, and
resend it to Bob; on the other hand, Alice can implement the CTRL operation simply by
using a mirror (reflecting both pulses). In this case, it is indeed very difficult for Alice
to regenerate the SIFT photon exactly at the right timing, so that it is indistinguishable
from a CTRL photon.

Furthermore, in [TLC09] it was shown that even if Alice could (somehow) have the
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machinery to perform SIFT with perfect timing, Eve would still be able to attack the
protocol by taking advantage of the fact that Alice’s detectors are imperfect: Eve’s
attack is modifying the frequency of the photon generated by Bob. Alice does not notice
the change in frequency. If Alice performs SIFT, the photon she generates is in the
original frequency; if she performs CTRL, the photon she reflects is in the frequency
modified by Eve. Therefore, if Eve is powerful enough, she can measure the frequency
and tell whether Alice used SIFT or CTRL. If Eve finds out that Alice used SIFT, she
can copy the bit sent by Alice in the z basis; if she finds out that Alice used CTRL, she
shifts the frequency back to the original frequency. (A very similar attack works for other
implementations, too—e.g., for polarization-based or phase-based implementations.)
This “tagging” attack makes it possible for Eve to get full information on the key

without inducing noise.

3.2 The Mirror Protocol

We suggest a new SQKD protocol, similar to “QKD with classical Alice”, that is
experimentally feasible: in the original protocol of “QKD with classical Alice”, Alice
could choose only between two operations (CTRL and SIFT); in our new protocol, that
we name the “Mirror protocol”, Alice may choose between four operations (CTRL,
SWAP-10, SWAP-01, and SWAP-ALL). This protocol avoids the need of using the
infeasible operation SIFT. The two operations SWAP-10 and SWAP-01 correspond to
two possible reflections of pulses by using a controllable mirror; these operations cannot
be described by qubit notations, so below we use 4-level system notations. Our new
protocol is based on the Fock space notations, where the |m1, mg) state represents m,
indistinguishable photons in the |1) mode and myg indistinguishable photons in the |o)
mode’; more details about the Fock space notations are given in Subsection 2.5.1.

This protocol is experimentally feasible and is safe against the “tagging” attack
described in [TLCO09]. Moreover, in this chapter we prove the protocol to be completely
robust against an attacker Eve that can do anything allowed by the laws of quantum
physics, including the possibility of sending multi-photon pulses (namely, assuming Eve
may use any quantum state consisting of the two modes |0) and |1)—or, equivalently,
any superposition of the Fock states |mj, mg)). In Chapter 5 we also prove it secure
against “uniform collective” attacks. An illustration of the protocol is available as
Figure 3.1.

We can describe the new protocol in terms of photon pulses that correspond to
two distinct time-bins, and of a controllable mirror operated by Alice: in this case, the
CTRL operation corresponds to operating the mirror on both pulses (reflecting both

pulses back to the originator, Bob); the SWAP-10 operation corresponds to operating

n the three “Mirror” chapters of this thesis (Chapters 3-5), we use the |m;,mo) notation to denote
two photon pulses (to make notations simpler in case we analyze two or three subsystems, each consisting
of several modes), in contrast to the |m1)|mo) notation used for this purpose in Subsection 2.5.1.
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Figure 3.1: A schematic diagram of the Mirror protocol described in
Section 3.2. This figure was generated by Walter O. Krawec for [KLM20] (Chapter 5).

the mirror only on the |o) pulse while measuring the other pulse (and similarly for the
SWAP-01 operation and the |1) pulse); and the SWAP-ALL operation corresponds to
measuring all pulses, without reflecting any of them.

For the experimental implementation, we note that a (very slow) mechanically-moved
mirror is trivial to implement; a much faster device can be electronically implemented by
using standard optical elements (that are commonly used in QKD): a Pockels cell (that
can change the polarization of the photon(s) in one of the pulses) and a polarizing beam
splitter (that makes it possible to split the two different pulses into two paths, because
they are now differently polarized). Like other (fast) QKD experimental settings,
implementation is feasible but is not trivial. More details about the experimental
implementation of this protocol are available in [Gurl3, Tam14].

Let Alice’s initial probe be in the vacuum state |0,0)4,, ., and let us assume that a

anc?

single photon is arriving from Bob; thus, the system as a whole can be described as a

4-level system (a single photon in four modes). Alice’s operations are as follows:

I (CTRL) Do nothing:
110,0) A pnclm1,m0)B = [0,0) A e |1, m0)B- (3.1)

S1 (SWAP-10) Swap half of Alice’s probe (the left mode) with the |m)p half of
Bob’s state:
5110, 0) Agne [m1,m0)B = 1M1, 0) A1 |0, M0) B- (3-2)

So (SWAP-01) Swap half of Alice’s probe (the right mode) with the |mg)p half of
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Bob’s state:

5010, 0) Anc |1, m0)B = [0,M0) A 4 [1, 0)B- (3.3)

S (SWAP-ALL) Swap the entire probe of Alice with the entire state |m,mo)p of
Bob:
510,0) Auue[m1,1m0)B = |11, 10) A1 |0, 0)B- (3.4)

state)

in the z basis and sends to Bob the |-)p state. If there is no noise and no eavesdropping,

After each of the three SWAP operations, Alice measures her probe (the |-)a,, .
and if we analyze the “ideal case” (in which exactly one photon is arriving from Bob to

Alice), then each round is described by the four-dimensional Hilbert space

Span{|070>Aanc|0’]‘>B ? ’070>Aanc|1’0>B ) ‘O’ 1>Aanc’07 0>B ’ |]"0>Aanc|07 O>B}7 (35)

namely, by a four-level system; for our protocol, we use this four-level system instead
of the qubit system used by BB84 and by many other QKD schemes. In the most
general “theoretical attack” (the attack analyzed by standard QKD security proofs),
Eve attacks Alice’s and Bob’s states using any probe of her choice, but she cannot
modify the four-dimensional Hilbert space of the protocol: she can only use these four
levels. However, in practical attacks (as analyzed in our robustness analysis), Eve may
use an extended Hilbert space (the entire Fock space).

While Eve is fully powerful, it is common to assume that Alice and Bob are limited
to use only current technology. In particular, Alice and Bob are limited in the sense that
they cannot count the number of photons in each mode, but can only check whether
a detector corresponding to a specific mode clicks (detects at least one photon in this
mode) or not (detects an empty mode). For our protocol to be practical (and for our
robustness analysis to be stronger), we assume Alice and Bob are indeed limited in that
sense: therefore, when Alice and Bob measure in the z basis, their measurement results
are denoted as ]Aﬁiﬂo, where l%o, ky € {0,1}. Similarly, when Bob measures in the z basis,
his measurement result is k_k,, where ky,k_ € {0,1}.

This limitation leads to the definition of “sum”, as follows: let us look at a measure-
ment result of Alice or Bob (that is 00, 01, 10, or 11). The “sum” of this measurement
result is the number of distinct modes detected to be non-empty during the measurement
(namely, the sum of digits in the measurement result). This definition is summarized in
Table 3.1.

The protocol consists of the following steps:

1. In each of the N rounds, Bob sends to Alice the |+)p state; Alice randomly chooses
one of her four classical operations (CTRL, SWAP-10, SWAP-01, or SWAP-ALL)
and sends the result back to Bob; and Bob measures the state he receives, choosing

randomly whether to measure in the z basis or the = basis.

2. Alice reveals her operation choices (CTRL, SWAP-x (z € {01,10}), or SWAP-ALL;
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Table 3.1: The four possible measurement results by Alice or Bob (measuring in the z
basis), depending on the state obtained by him or her (that is represented in the Fock
space notations).

Obtained State Measurement Result “Sum”
|0, 0) 00 0
]O,m()) (mo > 1) 01 1
Im1,0) (my > 1) 10 1
|m1,m0> (m1 Z 1 , Ty Z 1) 11 2

Table 3.2: Interpretations of Bob’s measurement results for CTRL states.

Bob’s Result Interpretation

00 a loss
01 (i.e., |[+)) a legal result
10 (i.e., |-)) an error
11 an error

Alice does not reveal her choices between SWAP-10 and SWAP-01, that she keeps
as a secret bit string), and Bob reveals his basis choices. They discard all CTRL
bits Bob measured in the z basis and all SWAP-x bits he measured in the x basis.

3. For each of the SWAP-x and SWAP-ALL states, Alice and Bob reveal the “sums”

of their measurement results.

4. Alice and Bob interpret their measurement results: they consider several types of
measurement results as errors, losses, or valid results. See Tables 3.2-3.4 for the
details.

5. For all SWAP-x (x € {01,10}) rounds, if Bob’s “sum” is 1 and Alice’s “sum”
is 0, then Alice and Bob share a (secret) bit b, because Alice knows (in secret)
what operation S;_; she performed, and Bob knows (in secret) what mode |b) he
detected. Each one of Alice and Bob keeps this sequence of bits b as his or her

secret bit string.

6. Alice and Bob reveal some random subsets of their bit strings, compare them, and
estimate the error rate (this is the error rate on the way from Alice back to Bob).
They abort the protocol if the error rate in these bits, or any of the error rates

measured in Step 4, is above a specified threshold. They discard the revealed bits.

7. Alice and Bob perform error correction and privacy amplification processes on the
remaining bit string, yielding a final key that is identical for Alice and Bob and is

fully secure from any eavesdropper.
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Table 3.3: Interpretations of Alice’s and Bob’s measurement results for SWAP-x states.

Alice’s “Sum” Bob’s “Sum?” Interpretation

0 a loss

1 Alice and Bob share a bit

0 Alice and Bob do not share a bit
1
2

0
0
1
1 an error
o

Oorl

2 impossible

=

aln error

Table 3.4: Interpretations of Alice’s and Bob’s measurement results for SWAP-ALL
states.

Alice’s Result Bob’s Result Interpretation

00 00 a loss

01 or 10 00 a legal result
11 00 an error
any 01, 10, or 11 an error

Notice that Bob does not have a special role in the beginning: he always generates
the same state, |[4+). It is even possible that the adversary Eve generates this state

instead of him.

3.3 Robustness Analysis

To prove robustness, we will prove that for Eve’s attack to be undetectable by Alice
and Bob (namely, for Eve’s attack not to cause any errors), it must not give Eve any
information.

Eve’s attack on a state can be performed in both directions: from the source (Bob)
to Alice, Eve applies U; from Alice back to Bob, Eve applies V. We may assume,
without limiting generality, that Eve uses a fixed probe space Hg for her attacks.

According to the definition of robustness, we will prove that if, during a run of the
protocol, no error can be detected by Alice and Bob, then Eve gets no information on
the raw key. According to Tables 3.2-3.4, if Alice and Bob cannot find any error, the
following conditions must be true for all measurement results that were not discarded

due to basis mismatch:
1. For all CTRL rounds, Bob’s measurement result (in the x basis) must not be 10
or 11: namely, Bob must never detect any photon in the |—) mode.

2. For all SWAP-x rounds, Alice’s “sum” and Bob’s “sum” (in the z basis) must not
be both 1.

3. For all SWAP-x rounds, Bob’s “sum” (in the z basis) must not be 2: namely,

Bob’s measurement result must not be 11.
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4. For all SWAP-x rounds, no error (that may be detected during the protocol) can

exist. In other words:

(a) For all SWAP-10 rounds, Bob’s measurement result (in the z basis) must not
be 10.

(b) For all SWAP-01 rounds, Bob’s measurement result (in the z basis) must not
be 01.

5. For all SWAP-ALL rounds, Alice’s measurement result must not be 11.
6. For all SWAP-ALL rounds, Bob’s measurement result must not be 01, 10, or 11.

We now analyze each round of the protocol. After the round begins, the source
(Bob) sends to Alice the state |0,1)xp € Hp. Eve can now interfere: she attaches her
own probe state (in the Hilbert space Hg) and applies the unitary transformation U.

The resulting Bob+Eve state (including Eve’s probe) is of the form

|init) = Z Im1,m0)B|Emy mo)E> (3.6)

m1>0
mo>0

where |E; j)g are non-normalized vectors in Hg.

Condition 5 means that |Ey,, mq)r = 0 for all m1, mg satisfying m; > 1 and mg > 1.

Therefore,
[Vinit) = [@1,0) + |P0,1) + |©0,0), (3.7)
where
6100 £ ) |m1,0)B|Em, 0)E, (3.8)
mi1>1
b01) 2 D 10,m0)B|Eomo)E, (3.9)
mo>1
|po0) = 0,0)8|Eo0)E- (3.10)

Alice now applies one of the four possible operations (CTRL = I, SWAP-10 = S,
SWAP-01 = Sy, or SWAP-ALL = S) and destructively measures her probe state. The
(non-normalized) state of the Bob+Eve system after Alice’s operation and measurement
is written in Table 3.5.

Then, Eve applies a second unitary transformation V on the state sent from Alice
to Bob (and on her own probe state). According to conditions 2, 3, and 6, the density
matrices Vpg)mVT, VpggnVT, and Vpg.arr, V1 must only overlap with |0,0)p. It follows
that there exists |Hoo)r € Hg such that

Vléo,0) = [0,0)B|Ho0)E- (3.11)

Let us denote V]p10) = D mi>0|m1, mo)B|Fimy,me)B- Let us look at a SWAP-01

mo>0
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Table 3.5: The (non-normalized) state of the Bob+Eve system after Alice’s operation,
given Alice’s “sum”. Note that |¢1,0), |¢0,1), and |¢o,0) are defined in
Equations (3.8)—(3.10).

Alice’s Operation Alice’s “Sum” Bob+Eve State
CTRL [verrL) £ |91,0) + |90.1) + |90,0)

SWAP-10 0 [000) 2 1601) + [ 00)

SWAP-01 0 Wé%ﬁ £ |p10) + |¢0,0)

SWAP-10 1 P02 Y 10,008(0, 015 @ | By 0)E(Emy 0l
mi>1

SWAP-01 1 P 2 D 10,0)3(0, 0l @ [ Eomg) o Eoymo
mo>1

SWAP-ALL ps-aLL 2 pi1o + P + [90.0) (900l

round for which Alice’s “sum” is 0: in this round, the state of Bob+FEve after Eve’s

attack is

V\zbg_)%l) = Vl|é1,0) + Vl]do,0)
= 37 [m1, m0)B|Fmyng)E + 10,0)5] Hoo)e, (3.12)

m1>0
mo>0

and following conditions 4b and 3, Bob must not detect a photon in the |0) mode
(otherwise, the error may be detected during the protocol). Therefore, |Fy,, mo)E =0
for all mg > 1. It follows that

Vigro) = Y |m1,0)BFm, 0)E +[0,0)8Fo0)E. (3.13)

my>1

Similarly (following conditions 4a and 3),

Vigo1) = D 10,m0)B|Gomo)E + [0,0)5]Go0)e- (3.14)

mo>1

Now, Equations (3.11), (3.13), and (3.14) imply that if Alice applies CTRL, the
state of Bob+Eve after Eve’s attack is

Viverry) = V0é0) + Vidoa) + Vieoo)
= Z [[m, 0)B|Fin0)E +10,m)B|Go.m)e] +|0,0)[H)r, (3.15)

m>1

where |H)g £ |Fo,0)E + |Goo)E + |Hoo)r. Following condition 1, the probability of Bob
detecting a photon in the |—) mode must be 0.

We now use the following Lemma:

Lemma 3.1. If [/) = Y, [Im, 0)5|Fo)i + 10, m)5|Go,n)e] + [0, 0)s|H)E is a bi-
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partite state in Hp ® Hg, and if there is zero probability that Bob detects a photon in
the |—) mode, then |Fi o0)g = |Go1)E, and |Fmo)e = |Gom)E = 0 for all m > 2.

Proof. If there is zero probability that Bob detects a photon in the |—) mode, then
there is zero probability of measuring any basis state |m_, m4 )x B of Hp which satisfies
m_ > 1.

For m = 1, since |0,1)p = Mw and |1,0)p = w, we get the
following equation:
0,1
11,0)8]F10)E + [0, 1)B|Go1)e = 0.1)p [|Go,1)E + [F1,0)E]

V2

|1a0>xB

+ — [|G — |F} . 3.16

7 [|Go,1)E — [F1,0)E] (3.16)

Since the probability of detecting a photon in the |—) mode must be 0 (and, in particular,
the probability of detecting |1,0)x g must be 0), it is necessary that |F19)r = |Go1)E-

For m > 2, using the ladder operators ag, a1, a4+, and a_, since ap = a+j§a‘ and
a; = %, we get
omyy — 100 _ (al+al )" 0.0
B vm! V2 vm/!
= a al ,0)B )
2m-ml = k
and
mO)s = ai"10,0)s _ ((al —al\" [0,0)p
’ vm! V2 vm/!
1 < > Tk Tm—k
V2m . m! b
From Equations (3.17)—(3.18) it follows that
m, 0)B| Frm0)E + 10,m)B|Gom)e = [e"™)B[|Gom)E + [Fino)E]

where
ey & —— Z ( > a0, 0, (3.20)
2 keven
k m—k
o) 2 e Z( ) el ™ 0,00, (3:21)
2m - "k odd

k —k
We notice that a' alm |0,0)p is, up to a constant factor, the Fock state |k, m — k)x B
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Because the probability of finding a photon in the |—) mode must be zero, it means
that the coeflicient of aT_kaLm_k]O, 0)p must be zero for all k£ > 1.

Substituting |e(™)p and [o(™))g by their values in Equation (3.19), the coefficient of
aikalm_km, 0)B (up to a non-zero constant factor) is |Go m)E + |Fm,0)E for even values
of k and |Gom)E — |Fm,0)E for odd values of k. Since k=m >1land k=m—-1>1
have different parities, this implies both |Gom)E + |Fm0)e and |Gom)E — |Fm,0)E must

be 0, and thus |F, 0)g = |Gom)e = 0. N

Applying Lemma 3.1, we deduce that |Fy, 0)g = |Go,m)r = 0 for all m > 2, and that
[F10)E = |Go)e £ |[F)E.

It follows that the joint states of Bob+Eve after Eve’s attack, when Alice performed
SWAP-x and her “sum” was 0 (these are the only rounds in which Alice and Bob may
share a secret bit), are: (using Table 3.5 and Equations (3.11), (3.13), and (3.14))

VIl = Vigos) + Vigoo) = 0, Vs F)r + 10,008 [|Goo)e + [Hoo)s] , (3.22)
VI = Vigro) + Vigoo) = 1,08 F)r + 10,0)5 [| Foo)e + |Hoo)x] - (3.23)

Therefore, the state of Eve’s probe is independent of all Alice’s and Bob’s shared
bits, and is equal to |F)g whenever Alice and Bob share a bit. Eve can thus get no
information on the bits shared by Alice and Bob without causing errors that may be
noticed by Alice and Bob.

3.4 Conclusion

In this chapter, we have suggested a solution for a practical security problem of SQKD
protocols, that was discussed in Section 3.1 and [TLC09]: we have presented a new
semiquantum key distribution protocol and proved it robust (see Chapter 5 for full
security analysis against “uniform collective” attacks). Unlike all previous SQKD

protocols, our new protocol can be experimentally implemented in a secure way.
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Chapter 4

Attacks Against a Simplified

Variant of the Mirror Protocol

In this chapter, we present a simpler variant of the Mirror protocol (the “simplified
Mirror protocol”) which is easier to implement. Our variant allows the classical party,
Alice, to choose one of three operations, while the Mirror protocol allows her to choose
one of four operations. We then present two attacks against this variant, proving it
non-robust. Our results show the four classical operations allowed by the Mirror protocol
are probably necessary for robustness.

This chapter is based on a paper published in Entropy in 2018 by Michel Boyer,
Rotem Liss, and Tal Mor [BLM18].

4.1 The Simplified Mirror Protocol

The simplified Mirror protocol we present in this chapter is identical to the Mirror
protocol described in Section 3.2, except that it does not include the SWAP-ALL
operation. In other words, in the simplified protocol, Alice chooses at random one of
the three classical operations CTRL, SWAP-10, and SWAP-01.

The simplified protocol is easier to implement, because the SWAP-ALL operation
poses some experimental challenges to the electronic implementation discussed in
Section 3.2: for implementing SWAP-ALL, the Pockels cell should either remain working
for a long time (changing polarization for both pulses) or be operated twice (changing
polarization for each pulse separately). In more details, for the two pulses representing
the |0) mode and the |1) mode: if we assume the duration of each pulse is t and the time
difference between the two pulses is 7' (where t < T'), the first solution means keeping
the Pockels cell operating during the time period [0,7 + 2t], and the second solution
means operating the Pockels cell during the two time periods [0,¢] and [T + ¢, T + 2¢].
The first solution may be problematic for some models of the Pockels cell, and the
second solution may be problematic because of the recovery time needed for the Pockels

cell. Therefore, at least in some implementations, the simplified Mirror protocol is much

37



easier to implement than the standard Mirror protocol.

Moreover, analyzing the simplified protocol gives a better understanding of the
properties required for an SQKD protocol to be robust. In particular, this analysis
explains why the structure and complexity of the Mirror protocol are necessary for
robustness.

For completeness, we provide below the full description of the simplified Mirror
protocol. We emphasize, however, that this protocol is almost identical to the Mirror
protocol described in Section 3.2, and the only difference is removing the SWAP-ALL
operation.

In the simplified Mirror protocol, in each round, Bob sends to Alice the initial state

= w. Then, Alice prepares an ancillary

|+)B, which is equivalent to [0, 1)x B
state in the initial vacuum state |0,0),,. and chooses at random one of the following
three classical operations (defined on any Fock state she may possibly get, due to Eve’s

attack):

I (CTRL) Reflect all photons towards Bob, without measuring any photon. The

mathematical description is:
110, 0) Ay |m1, mo)B = [0, 0) A M1, m0) B (4.1)

S1 (SWAP-10) Reflect all photons in the |0) mode towards Bob, and measure all

photons in the |1) mode. The mathematical description is:
Sl |07 0>Aanc |m17 m0>B = ‘ml? 0>Aanc ’07 m0>B' (42)

So (SWAP-01) Reflect all photons in the |1) mode towards Bob, and measure all

photons in the |0) mode. The mathematical description is:
SO|07 0>Aanc |m17 m(])B = ‘O? m0>Aanc |m1? O>B (43)

We note that in the above mathematical description, Alice measures her ancillary
state |-)a,,. in the z basis and sends back to Bob the |-)p state. The states sent from
Alice to Bob (without any error, loss, or eavesdropping) are detailed in Table 4.1. Then,
Bob measures the incoming state in a random basis (either the z basis or the x basis).

After completing all rounds, Alice sends over the classical channel her operation
choices (CTRL or SWAP-z; she keeps x € {01,10} in secret), Bob sends over the
classical channel his basis choices, and both of them reveal some non-secret information
on their measurement results (as elaborated in Section 3.2). Then, Alice and Bob reveal
and compute the error rate on test bits for which Alice used SWAP-10 or SWAP-01
and Bob measured in the z basis, and the error rate on test bits for which Alice used
CTRL and Bob measured in the x basis. They also check whether other errors exist

(for example, it must never happen that both Alice and Bob detect a photon). Alice
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Table 4.1: The state sent from Alice to Bob in the simplified Mirror protocol without
errors or losses, depending on Alice’s classical operation and on whether Alice detected
a photon or not.

Alice’s Operation Did Alice Detect a Photon? State Sent from Alice to Bob

CTRL no (happens with certainty) 10,1)xB = % [0,1)g +[1,0)8]
SWAP-10 no (happens with probability %) [0, 1)p
SWAP-10 yes (happens with probability %) |0,0)p
SWAP-01 no (happens with probability ) [1,0)p
SWAP-01 yes (happens with probability %) [0,0)p

and Bob also discard mismatched rounds, such as rounds in which Alice used SWAP-10
and Bob used the x basis.

In the non-testing rounds, Alice and Bob share the secret bit 0 if Alice uses SWAP-10
and detects no photon while Bob measures in the z basis and detects a photon in the
|o) mode; similarly, they share the secret bit 1 if Alice uses SWAP-01 and detects no
photon while Bob measures in the z basis and detects a photon in the |1) mode.

Finally, Alice and Bob verify that the error rates are below some thresholds, and
they perform error correction and privacy amplification in the standard way for QKD
protocols. At the end of the protocol, Alice and Bob hold an identical final key that is

supposed to be completely secure against any eavesdropper.

4.2 Attacks Against the Simplified Mirror Protocol

We prove the simplified protocol to be non-robust by presenting two attacks: a “full
attack” described in Subsection 4.2.1, which gives Eve full information but causes full
loss of the CTRL bits, and a “weaker attack” described in Subsection 4.2.2, which gives

Eve less information but causes fewer losses of CTRL bits.

4.2.1 A Full Attack on the Simplified Protocol

In this attack, Eve gets full information of all secret bits: namely, she gets full information
on the SWAP-10 and SWAP-01 bits that were measured by Bob in the z basis.

Eve applies her attack in two stages: the first stage is on the way from Bob to Alice,
and the second stage is on the way from Alice to Bob. In both stages she uses her
own probe space (namely, ancillary space) Hg = Hs3 spanned by the orthonormal basis
{|0)g, |[1)E,|2)r}. We assume that Eve fully controls the environment, the errors, and
the losses (this is a standard assumption when analyzing the security of QKD): namely,
no losses and no errors exist between Bob and Eve or between Alice and Eve.

In the first stage of the attack (on the way from Bob to Alice), Eve intercepts the
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Table 4.2: The state of Bob+Eve after Alice’s classical operation for the attacks
described in Subsections 4.2.1 and 4.2.2, depending on Alice’s classical operation and
on whether Alice detected a photon or not.

Alice’s Operation Did Alice Detect a Photon? Bob+Eve State
CTRL no (happens with certainty) % [0, )s|1)E + |1,0)B]1)E
+10,0)8/0)]
SWAP-10 no (happens with probability 2) % [0, 1)g|1)g + |0,0)|0)E]
SWAP-10 yes (happens with probability %) 10,0)p|1)E
SWAP-01 no (happens with probability 2) % [11,0)s|1)E + 10,0)|0)E]
SWAP-01 yes (happens with probability %) 10,0)5|1)k

state |[+)B = |0, 1)x B sent by Bob, generates instead the state

fHO ,Ds|1)E + [1,0)B/1)E + 10,0)B[|0)E \/70 D pll)E \/7|0 0)B[0)E, (4.4)

and sends to Alice the B part of the state. This state causes Alice to get no photons with
probability % and get the expected |4)p state with probability % Alice then performs
at random one of the three classical operations CTRL, SWAP-10, or SWAP-01; the
resulting possible states of Bob+Eve are described in Table 4.2.

In the second stage of the attack (on the way from Alice to Bob), Eve applies the

unitary operator V' on the joint Bob+Eve state, where V is defined as follows:

VI0, )| = _\/g’170>B’1>E + \/§|O’O>B‘O>Ea (4.5)
VL0 = —\/307 Lpl0)E + \/?0,0>B\1>E, (4.6)
V100,0)|0)g = \/;0» l0)E + \/§|1a 0)s|)E + \/;07 0)B|+)E, (4.7)

V10,0)8[1)r 10,0)B[2)E- (4.8)

V' is indeed a unitary operator, because we can prove the right-hand sides to be
orthonormal: all right-hand sides are normalized vectors; the first two vectors are clearly
orthogonal; the third vector is orthogonal to the first two, because (0|+)g = (1|+)g = %;
and the fourth vector is orthogonal to the three others. Thus, V defines (or, more

precisely, can be extended to) a unitary operator on Hp ® Hg.

Applying the unitary operator V to Table 4.2 gives the states listed in Table 4.3.
Comparing it with Table 4.1, we conclude that this attack never causes Alice and Bob
to detect an error. Moreover, Eve detects the entire secret key: Eve measures “0” in
her probe if Alice and Bob agree on the “secret” bit 0, and she measures “1” in her
probe if Alice and Bob agree on the “secret” bit 1. However, Eve causes several kinds

of losses; in particular, all CTRL bits are lost.
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Table 4.3: The state of Bob+Eve after completing Eve’s attack described in
Subsection 4.2.1, depending on Alice’s classical operation and on whether Alice
detected a photon or not.

Alice’s Operation Did Alice Detect a Photon? Bob-+Eve State
CTRL no (happens with certainty) 0,0)8[+)E
1 3|0 1
SWAP-10 no (happens with probability %) %|0, 1)g[0)E + 0, 0>B‘>E\/—1L2‘>E
SWAP-10 yes (happens with probability %) 0,0)B|2)E
1 1
SWAP-01 no (happens with probability %) %\1, 0)B[L)E + 10, 0>B’0>E+\/1%|>E
SWAP-01 yes (happens with probability %) 10,0)B]2)r

Therefore, this attack makes it possible for Eve to get full information without
inducing any error. However, Eve causes many losses, including full loss of the CTRL
bits.

4.2.2 A Weaker Attack on the Simplified Protocol

The full attack described in Subsection 4.2.1 makes it impossible for Bob to ever detect
a CTRL bit, which may look suspicious. We now present a weaker attack that lets Bob
detect some CTRL bits but gives Eve less information.

The first stage of the attack (on the way from Bob to Alice) remains the same:
that is, the state Eve sends to Alice is still given by Equation (4.4), and the resulting
Bob+Eve state after Alice’s classical operation is still shown in Table 4.2. Eve’s probe
space is, too, the same as before: Hg = Hs £ Span{|0), |1)g, |2)r}.

This attack is characterized by the parameter 0 < ¢ < 1. We will see that e = 0
gives the full attack described in Subsection 4.2.1, while € = 1 gives Eve no information
at all.

Another important parameter used by the attack is

1— €2
Hé\/3_262. (4.9)

We notice that for small values of €, the value of x is close to \/g . Moreover, for all
0 < e <1, it holds that 0 < €2 + k? < 1 and 2x% < 1.
In the second stage of the attack (on the way from Alice to Bob), Eve applies the

unitary operator V on the joint Bob+FEve state, where V is defined as follows:

V00,D)g|l)g =  €0,1)B|2)g — &|1,0)5|1)g + V1 — k2 — €2]0,0)5|0)g, (4.10)
VI1,0)g|1)g = —k|0,1)B|0)g + €|1,0)5]2)E + V1 — k% — €2]0,0)p|1)g, (4.11)
V100,0)g]0)g =  £|0,1)B|0)g + #|1,0)5|1)E + V1 — 2x2|0,0)s|+)E,  (4.12)
V00,0)ge = [0,0)B[2)E. (4.13)
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Table 4.4: The state of Bob+Eve after completing Eve’s attack described in
Subsection 4.2.2, depending on Alice’s classical operation and on whether Alice detected
a photon or not. The parameters a and b are defined in Equations (4.16)—(4.17).

Alice’s Operation Did Alice Detect a Photon? Bob+Eve State
2¢e2
CTRL no (happens with certainty) \/ %\O, DxBl2)E
2¢?
/1= ?|070>B|+>E
1
SWAP-10 no (happens with probability 2) 7 [0, )p (e]2)E + x[0)R)
+10,0)8 (a|0) + b|1)5)]
SWAP-10 yes (happens with probability %) 10,0)B2)E
1
SWAP-01 no (happens with probability 2) 7 [11,0)B (¢]2)g + £|1)E)
+10,0)8 (b0)E + a|l)e)]
SWAP-01 yes (happens with probability %) |0,0)B]2)r

V is indeed a unitary operator, because we can prove the right-hand sides to be
orthonormal: all right-hand sides are clearly normalized; the first two vectors are
orthogonal; the fourth vector is orthogonal to the three others; and the third vector is

orthogonal to the first and to the second, because

3—2e2 - 2(1—¢€?) 1
2 _
1-2x% = T = 55" (4.14)
_22_1_2_ 2_24 21_22
1_/{2_62 — (3 6) ( 6) (36 € ) — ( 6) , (415)
3 — 2¢2 3 — 2¢2

and thus ¥ 1_“2_\%@ = k2. Therefore, V extends to a unitary operator on Hp ® Hg.

The final global state after Eve’s attack is described in Table 4.4 (computed by
applying the operator V' to Table 4.2), given the following definitions:

1 — 2k2
0 2 Jispoag iz (4.16)

V2
a V1 —2k2
T

We notice that for € = 0, the attack is the same as in Subsection 4.2.1. If € = 1, the

loss rate of CTRL bits is %, and Eve gets no information at all on the information bits

(4.17)

(because k = 0).
In general, if Alice and Bob share a “secret” bit b € {0,1}, Eve’s probe state is in

the (normalized) state
€[2)E + Kk|b)E

Ve2 4+ g2

When Eve measures her probe state in the computational basis {|0)g, |1)E, |2)},

(4.18)
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Table 4.5: The probability p of Eve obtaining an information bit, and the loss rates
Rcrrr and Rgwap.x of CTRL and SWAP-x bits (where z € {01, 10}), respectively, for
several values of the attack’s parameter e.

€ 0 01 02 03 04 05 06 07 08 09 1

P 1 097 0.89 078 066 055 044 034 025 015 O
RcoTrL 1 099 097 094 089 0.83 0.76 0.67 0.57 0.46 0.33
Rswapx 083 083 082 0.79 0.76 0.73 0.68 0.63 0.58 0.53 0.5

she gets the information bit b with probability

K2 1— €2

= = 4-1
P= a2 T 112 — 260 (4.19)
and the loss rates of CTRL and SWAP-z bits (where x € {01,10}) are
2¢2
Rerr, = 1- 3 (4.20)
€2 + K2
Rswapx = 1-— 5 (4.21)

respectively.

Table 4.5 shows the probabilities p and the loss rates RcoTrL, Rswap.x for various
values of €. For example, for € = 0.5, Eve still gets the information bit with probability
p = 0.55, Bob’s loss rate for the CTRL bits is Rorrr, &~ 0.83, and his loss rate for the
SWAP-z bits is Rswap-x ~ 0.73.

For all values of ¢, the attack causes no errors. However, in principle, it can be
detected because it causes different loss rates to different types of bits: the loss rate
experienced by Bob in the CTRL bits, RcTri, is usually different from the loss rate
in the SWAP-z bits, Rswap-x (see Table 4.5 for details). Therefore, in principle, the
attack can be detected by a statistical test for most values of e.

The loss rates become equal only for the value € = ¢y = 4/ 3_2—*@ ~ 0.796 (which gives
K2 = %) It seems that this specific attack cannot be detected, even in principle: it
causes no errors, and it causes the same loss rate for all qubits. For this attack, Eve gets
the information bit with probability p = i, and the loss rates are RoTrr, = Rswap-x =
% ~ 0.577. Therefore, this attack gives Eve a reasonable amount of information, and it
is not detectable by looking at errors or comparing loss rates. (We can slightly modify
the attack to make the loss rates identical in both directions of the quantum channel,

t00.)

We conclude that this weaker attack gives Eve partial information, causes no errors,
and causes several loss rates. We also conclude that since the loss rates caused by the
attack are usually different for different types of bits, the attack can be detected, in

principle, for any value of € except 3. However, for € = ¢y, the attack seems undetectable.
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4.3 Conclusion

We have discussed a simpler and natural variant of the Mirror protocol (the “simplified
Mirror protocol”) which is easier to implement. We have found the simplified Mirror
protocol to be completely non-robust, actually making it an “over-simplified” Mirror
protocol. We have presented in Subsection 4.2.1 an attack giving Eve full information
without causing any error; in addition, since this attack also causes full loss of the
CTRL bits, we have presented in Subsection 4.2.2 weaker attacks giving Eve partial
information, causing no errors, and causing fewer losses. In particular, we have presented
a specific attack (characterized by the parameter ¢ = ¢y = 3_—2\/5 ~ 0.796) that seems
undetectable and gives Eve one quarter (1) of all information bits.

These attacks prove the simplified Mirror protocol, which allows Alice to use
only three classical operations (CTRL, SWAP-10, and SWAP-01), to be completely
non-robust. On the other hand, the Mirror protocol is proved completely robust (see
Section 3.3). As explained in Section 4.1, the only difference between the simplified Mirror
protocol and the Mirror protocol is that the Mirror protocol allows a fourth classical
operation, SWAP-ALL; therefore, allowing the SWAP-ALL operation is necessary for
robustness. More generally, the Mirror protocol probably cannot be made much simpler
while keeping it robust: its complexity is crucial for robustness. Therefore, we have seen
that if we need an SQKD protocol that is experimentally feasible in a secure way, we
may have to use a relatively complicated protocol.

In this chapter, we have not checked the experimental feasibility of Eve’s attacks,
because Eve is usually assumed to be all-powerful. Nonetheless, it can be interesting to
check in the future the experimental feasibility of those attacks and discover whether
the simplified Mirror protocol is flawed also in practice and not “only” in theory. Other
interesting directions for future research include trying to find experimentally feasible
SQKD protocols that are simpler than the Mirror protocol, and trying to find similar
attacks against other QKD and SQKD protocols that have not been proved completely

robust.
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Chapter 5

Security of the Mirror Protocol
Against Uniform Collective
Attacks

In this chapter, we prove security of the Mirror protocol against “uniform collective”

attacks (defined in Subsection 2.3.2) and evaluate the resulting key rate.
This chapter is based on a preprint posted to the arXiv in 2020 by Walter O. Krawec,
Rotem Liss, and Tal Mor [KLM20].

5.1 Introduction

This chapter proves security of the Mirror protocol under a large class of uniform
collective attacks. The class of the “uniform collective attacks” is an important and
powerful subclass of possible attacks (see Subsection 2.3.2 for details); some existing
security proofs of SQKD protocols against general attacks may in fact be limited to
uniform collective attacks, because they use de Finetti’s theorem and similar techniques
(see [Ren08, CKR09]) that can directly be applied only to entanglement-based protocols?.
Therefore, in this chapter we restrict our analysis to uniform collective attacks.

The uniform collective attacks analyzed in this chapter allow Eve to inject multiple
photons into the classical user’s lab, but not into the quantum user’s lab (attacks of the
later kind are left for future analysis, but we briefly discuss them in the beginning of
Section 5.3). In addition, we limit our analysis to two-mode quantum communication,
leaving more complicated attacks for future research. We assume Alice’s and Bob’s
devices precisely implement the needed operations (most notably, Alice’s classical
operations described in Equations (5.1)—(5.4)), and without loss of generality, we

assume an all-powerful Eve controlling all errors and losses in the quantum channel.

! Applying de Finetti’s theorem and similar techniques to prepare-and-measure protocols (including
SQKD protocols) is usually easy for one-way QKD protocols, but it does not necessarily work for
two-way protocols. See Subsection 2.2.2 for details about the different types of QKD protocols.
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We derive an information-theoretic proof of security against these attacks and
simulate the performance of the protocol in a variety of realistic scenarios, including
lossy quantum channels, compared to the BB84 protocol. Ultimately, this chapter shows
that SQKD protocols hold the potential to be secure and feasible in practice, and not
just “secure in ideal conditions”. The methods and techniques we present in this work
may also be applicable to security proofs of other SQKD protocols or even other two-way

QKD protocols where users are limited in some manner in their quantum capabilities.

5.2 The Mirror Protocol: a Concise Description

In this section we present a concise description of the Mirror protocol, which should be
useful for the security proof. A full description of the protocol is available in Section 3.2;
In the Mirror protocol, in each round, Bob sends to Alice the initial state |+)p, which
. . 0,1)p+[1,0
is equivalent to |0, 1)xp = %

and chooses at random one of the following four classical

. Then, Alice prepares an ancillary state in the

initial vacuum state |0, 0) o

anc

operations (defined on any Fock state she may possibly get, due to Eve’s attack):

I (CTRL) Reflect all photons towards Bob, without measuring any photon. The

mathematical description is:
110, 0) Aune|m1, mo)B = [0,0) A M1, m0) B (5.1)

S1 (SWAP-10) Reflect all photons in the |0) mode towards Bob, and measure all

photons in the |1) mode. The mathematical description is:
5110, 0) A e Im1, mo)B = [ma, 0) A4, [0, m20) B (5.2)

So (SWAP-01) Reflect all photons in the |1) mode towards Bob, and measure all

photons in the |0) mode. The mathematical description is:
50[0, 0) Ague |1, m0)B = 10, M0) Ay |21, 0)B- (5.3)

S (SWAP-ALL) Measure all photons, without reflecting any photon towards Bob.

The mathematical description is:

S10,0) Agne Im1,m0)B = [M1,M0) A, 10, 0)B. (5.4)

We note that in the above mathematical description, Alice measures her ancillary
state |-)a,,. in the z basis and sends back to Bob the |-)p state.

The states sent from Alice to Bob (without any error, loss, or eavesdropping) and
their interpretations, depending on Alice’s random choice of a classical operation and

on whether Alice detected a photon or not, are detailed in Table 5.1.
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Table 5.1: The state sent from Alice to Bob in the Mirror protocol without errors or
losses, and its interpretation, depending on Alice’s random choice of a classical
operation and on whether Alice detected a photon or not.

Alice’s Op. Did Alice Detect a Photon? State to Bob Round Type Raw Key

CTRL no (happens with certainty) |0, 1)x B “test” none

SWAP-10 no (happens with probability %) 10,1)B “raw key” 0
SWAP-10  yes (happens with probability %) |0,0)p “raw key” none
SWAP-01 no (happens with probability 3) 11,0)p “raw key” 1
SWAP-01  yes (happens with probability %) 10,0)p “raw key” none
SWAP-ALL yes (happens with certainty) 10,0)p “SWAP-ALL” none

Then, Bob measures the incoming state in a random basis (either the z basis or
the x basis). We assume here, as is true in most experimental setups, that Alice and
Bob use detectors and not counters: namely, their detectors cannot count the number
of incoming photons. Therefore, when a detector clicks, Alice and Bob cannot know
whether it detected a single-photon pulse (a single photon in its measured mode) or a

multi-photon pulse (more than one photon in its measured mode).

After completing all rounds, Alice and Bob perform classical post-processing: Alice
sends over the classical channel her operation choices (CTRL, SWAP-z, or SWAP-ALL;
she keeps x € {01, 10} in secret); Bob sends over the classical channel his basis choices;
and both of them reveal all rounds where they got a loss, and all measurement results
each of them got in all testing rounds (CTRL, SWAP-ALL, and a random subset of
the SWAP-z rounds, for which Alice also reveals her values of x € {01,10}) and in all
mismatched rounds (such as rounds in which Alice used SWAP-10 and Bob used the z
basis). In the non-testing rounds, as detailed in Table 5.1, Alice and Bob share the raw
key bit 0 if Alice uses SWAP-10 and detects no photon while Bob measures in the z
basis and detects a photon (or photons) in the |o) mode; similarly, they share the raw
key bit 1 if Alice uses SWAP-01 and detects no photon while Bob measures in the z

basis and detects a photon (or photons) in the |1) mode.

Now, Alice and Bob have enough information for computing all the probabilities
they need for finding the key rate (that are detailed later, in Table 5.3), so they compute
all these probabilities and deduce the final key rate according to the algorithm in
Subsection 5.3.7. If the final key rate is negative, they abort the protocol; otherwise,
they perform error correction and privacy amplification in the standard way for QKD
protocols. At the end of the protocol, Alice and Bob hold an identical final key that is

completely secure against any eavesdropper.
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5.3 Security Proof of the Mirror Protocol Against Uni-
form Collective Attacks

We now prove security of the Mirror protocol. For our security proof, we assume that
the adversary Eve is restricted to uniform collective attacks—namely, that Eve attacks
each round in an independent and identical manner, but she is allowed to postpone the
measurement of her private quantum ancilla until any future point in time. Beyond this,
we will also assume in our security analysis that Eve is allowed to inject any signal into
the forward channel (linking quantum Bob to classical Alice); in the reverse channel,
she is free to perform any quantum unitary probe, but we will assume that the number
of photons returning to Bob is at most one. That is, Eve is allowed to inject multiple
photons into the channel going to Alice, but on the way back, only a single photon or
no photons at all will be returned to Bob. This assumption means that Eve may need
to remove photons on the way from Alice to Bob, if she sent multiple photons towards
Alice; in Subsection 5.3.1 we explain how Eve can perform this attack.

The above assumption (that at most one photon is sent towards Bob) is made to
simplify the analysis of the return channel. We point out that in Chapter 3 we proved
the Mirror protocol to be completely robust even without this assumption—namely,
proved it robust against all multi-photon attacks and all kinds of losses and dark counts
(see Section 3.3); however, full security analysis of the multi-photon case, including
both losses and dark counts, is very difficult even in the simplest one-way standard
QKD, and even more so in any standard two-way QKD protocol such as “Plug &
Play” [MHHTZG97], “Ping Pong” [BF02], and LM05 [LMO05] (see also [BLMR13]).
Furthermore, this case has not been analyzed in security proofs of many other SQKD
protocols (e.g., [Kral5b, Kral6, ZQM18, Kral8]. Therefore, we do not aim to solve this
major issue here in the specific case of the Mirror protocol: extending the full security

proof to this most general case is left for future research.

5.3.1 Eve’s Attacks

Eve’s first attack: We first analyze the forward-channel attack—namely, the attack
on the way from Bob to Alice. Here, we note that it is to Eve’s advantage to simply
discard the signal coming from Bob (which should be the same each round and carries
no information at this point) and inject a signal of her own, possibly consisting of
multiple photons and entangled with her private quantum ancilla.

Specifically, in each round, Bob sends to Alice the same quantum state: |0,1)xp =

w. At this point, Eve performs her first attack: she replaces Bob’s original

state by her own state. Without loss of generality, Eve’s state is of the form:

|1/)0> £ Z ’m17m0>B‘€m1,m0>E- (55)

m1>0
mo>0
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Eve’s second attack: Then, Alice performs her classical operation (CTRL, SWAP-
10, SWAP-01, or SWAP-ALL) and sends the resulting state back to Bob. Now, Eve
performs her second attack, described as the unitary operator Ug. As explained above,
for the second attack we make the simplifying assumption that Eve always sends at
most one photon—namely, she sends a superposition of |0, 1), |1,0)s, and |0,0)g with
her corresponding ancillary states |gui mo B, |gm.mo)Es and g me)E. We emphasize
that this simplifying assumption applies only to the second attack, and not to the first
attack.
Thus, Eve’s second attack is of the form:

0,1 1,0
Unlmi, mo)slemmo)e =10, DBl iy mo B+ 1L OB B

+ 10,0)5f2) V- (5.6)

’
1:Mq,M1,M0

However, in our security proof we use terms of the following simplified notations:

Urlma,mo)Blem,mo)E = [0, D)8l 1o E + 11,0)Blgm0 o) E + 10,0089 1o )E- (5.7)

where we denote |g$n’im0>E £ |f£{]f7m0,m1,m0>E. We note that the operation of Uy
on states |mj,m{)B|€m, me)E Where m} # my or m{; # mo will not appear in our
security proof, because these states do not give us meaningful statistics? and thus do
not contribute to the probabilities in Table 5.3. We also note that since Eve is all-
powerful, she will have no trouble performing any unitary operation, even if it includes
a complicated operation for reducing the number of photons.

In both attacks, subsystem B is sent to a legitimate user, while subsystem E is kept

as Eve’s ancilla.

5.3.2 Analyzing all Types of Rounds

In Table 5.2 we classify all rounds into six types, that Alice and Bob need to analyze.
The rounds are classified according to Alice’s random choice of a classical operation and
Bob’s random choice of a measurement basis.

Notice the use of basis-mismatched rounds. Technically, we could have used only
the “standard” (basis-matching) rounds for completing the security proof, by using
the Cauchy-Schwarz inequality for finding worst-case bounds. However, using the
technique of analyzing “mismatched measurements” [BHP93, WMUO08], we can derive
a significantly improved formula for the final key rate.

Alice and Bob have to find relevant statistics for each type of round and compute all

2States of the form Ur|0,m0)B|€m;,mo)E and Ur|m1, 0)B|eém,,m,)E may appear in “raw key” rounds
analyzed in Subsection 5.3.3, but we analyze only rounds which contribute to the raw key, where
Alice detects no photon—namely, m; = 0 or mo = 0, respectively. In addition, states of the form
Ur|0,0)B|€m,,mq)E may appear in “SWAP-ALL” rounds analyzed in Subsection 5.3.5, but we analyze
only “double-clicks” of Alice (where Eve’s attack Ur is irrelevant, although we use it algebraically to
prove Lemma 5.1) and “creation” events (where Alice detects no photon, so m; = mo = 0).
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Table 5.2: All types of rounds, according to Alice’s random choice of a classical
operation [CTRL, SWAP-z (z € {01,10}), or SWAP-ALL| and Bob’s random choice of

a measurement basis (z or x).

Round Type Alice’s Operation Bob’s Basis
“raw key” SWAP-z computational (z)
mismatched “raw key” SWAP-z Hadamard (z)
“test” CTRL Hadamard (z)
mismatched “test” CTRL computational (z)
“SWAP-ALL” SWAP-ALL computational (z)
mismatched “SWAP-ALL” SWAP-ALL Hadamard (z)

probabilities listed in Table 5.3. In Subsections 5.3.3-5.3.5 we relate these probabilities
to the quantum states appearing in our security proof, and in Subsection 5.3.6 we derive

the resulting final key rate formula.

Table 5.3: All the probabilities Alice and Bob need to compute, and the formulas
relating them to quantum states in our security proof. All formulas are proved in
Subsections 5.3.3-5.3.5.

Prob. Round Definition Formula
(Eo|Eo)r  “raw key” Alice, Bob get raw key bits 0, 0, respectively
(E1|E)E  “raw key” Alice, Bob get raw key bits 0, 1, respectively
(E3|E9)g  “raw key” Alice, Bob get raw key bits 1,0, respectively
(E3|E3)g “raw key” Alice, Bob get raw key bits 1,1, respectively
M “raw key” both Alice and Bob get raw key bits =30 (Ei|E)E
D0+ mismatched Alice gets raw key bit 0; Bob observes |+) 2R(Ey|Er)E = 2po +

“raw key” — ((Eo|Eo)e + (E1|E1)E)
D1+ mismatched Alice gets raw key bit 1; Bob observes |+) 2R(Es|Es)r = 2p1 +

“raw key” — ((E2|E2)E + (B3| E3)E)
D+ “test” Bob observes |+) = ‘Z?:o |Ei) g

2
— 0 (I95) — |hj)E)

PCTRL: 0 mismatched Bob observes |0, 1) =2||Ey)E + |E2)r

“test” ~lg0)E + |ho)u/?
DCTRL: 1 mismatched Bob observes |1, 0) =2||E1)E + |E3)E

“test” —lg0)E + |P1)E|?
Ddouble “SWAP-ALL” Alice observes a “double-click” event (]1,1)) (ho|ho)& + (h1]h1)E < 3Paousie
Pereate:0  “SWAP-ALL”  Alice observes |0,0); Bob observes |0, 1) = 2(g90l90)E
Dereate:1  “SWAP-ALL”  Alice observes |0, 0); Bob observes |1,0) = 2(g1]91)E

In all types of rounds, Bob begins by sending |0,1)xp = m, which Eve

V2

immediately replaces by her own state [1) = > >0 |m1,mM0)B|€my.mo)E (see Equa-

mop>0
tion (5.5)). Then, Alice chooses her classical operation, as detailed below.
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5.3.3 “Raw Key” Rounds: Alice Chooses the SWAP-z Operation

In “raw key” rounds, Alice chooses either SWAP-10 or SWAP-01 (each with probability
1), that are defined in Equations (5.2)-(5.3). Then, the non-normalized state of the

joint system, conditioning on Alice detecting no photon3, is:

fter Al 1
Py ) = 2| Yo[a®P | Y 10,mo)Ble0.mo)E +5 0 (aeP > [ma,0)Blem, 0)i

mp=>0 m12>0
(5.8)
where we define:

P([$)) = [} (- (5.9)

We note that |0)4 and |1)a denote the raw key bit of Alice: Alice deduces it from her
own choice of SWAP-10 (which corresponds to |0)4) or SWAP-01 (which corresponds
to |1)a), as explained in Table 5.1.

After Eve’s second attack (namely, after Eve applies the U operator defined in

Equation (5.7)), the joint non-normalized state becomes:

(after Alice)
UrPaBE Ur

1
= 5lo){ola® P |10, 1)s D 190mo)E F 1108 D 190me)E + 10,008 > |90/, )E

mo>0 mo>0 mg>0

1
+ 5 a @ P | 10,18 D lgm, o)5+ 1,005 Y [gm o)m+10.0)8 D lgh) o)

m1>0 m1>0 m1>0
(5.10)
To simplify notation, we define the following states in subsystem E:
Bos 2 —= 37 g%
- 0,m
\/i mo>0 0
1
Ene = —& 1900 ) E
\/i m;O pmo
1
|E2)e = —= s
\/§ mzlg(] " 0
1
|E3)E = E Z fgml, (5.11)
m1>0

3Notice that according to Table 5.1, raw key bits are shared by Alice and Bob only in “raw key”
rounds where Alice detects no photon and Bob does detect a photon.
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so Equation (5.10) becomes:

URPSLSEI“ Alice) UIT%

1
= |o){o]a ® P | [0,1)B|Eo)r + [1,0)B|E1)E + |070>B72 ’98,’210>E
mo>0
1
+[1)(1[a ® P | [0,1)B|E2)E + |1,0)B|E3)E + |0, 0>B72 \9?,;?,0>E . (5.12)
m1>0

(a) Standard “Raw Key” Rounds: Bob Chooses the z Basis

Now, Bob measures his subsystem in the z basis, and his raw key bit is simply his
measurement result (“0” or “1”). Conditioning on Bob detecting a photon (namely,
measuring |0, 1)p or |1,0)p), the final normalized state of the joint system after Bob’s

measurement is:

1
PABE = M(IOOHOO\AB ® | Eo)(Eolg + |o1)(01|aB ® |E1)(E1lg

+[10)(10[aB © [E2)(Ealg + |11)(11]aB ® |E3) (E3]g), (5.13)

where M is a normalization term (which will be computed soon).

Equation (5.13) confirms that, as written in Table 5.3:

(Eo|Eo)r = Pr (Alice gets raw key bit 0, and Bob gets raw key bit 0), (5.14)
(E1|Eq)r = Pr(Alice gets raw key bit 0, and Bob gets raw key bit 1), (5.15)
(E2|E2)r = Pr (Alice gets raw key bit 1, and Bob gets raw key bit 0) (5.16)
(E3|Es)r = Pr (Alice gets raw key bit 1, and Bob gets raw key bit 1) . (5.17)
In addition, we can compute the normalization term M:
3
M = (Ei|E;)r = Pr(both Alice and Bob get raw key bits) (5.18)
i=0

= Pr(Alice observes no photon, and Bob observes a photon) .

Notice that all these probabilities are observable quantities: Alice and Bob estimate
(Eo|Eo)E, (E1|E1)E, (E2|E2)E, (E3|Es)g, and M during the classical post-processing
stage by testing a random subset of raw key bits.

(b) Mismatched “Raw Key” Rounds: Bob Chooses the = Basis

In this case, Bob measures his subsystem in the = basis. Let us rewrite the state

he measures, provided in Equation (5.12), by substituting |0,1)p = % and
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|1,0)p = 7|+>B\;§‘_>B. We get:

URPESSS Alice) UT

= |o){(ola @ P | [0,1)B|Eo)r + [1,0)s|E1)E +10,0)B

7 Z Omo E
+ |1)(1|a @ P [ |0,1)p|E2)g + |1,0)8|Es)g + |0,0)8 7 Z 9o o)
- o><o|A®P('+f> (IEo)e + | E)s) + )
+\1><1|A®P(‘+f> (Eob + | Bs)e) + ) (5.19)

H‘

where the remainders of the above terms (the “ --”) are irrelevant to our discussion.

We denote by po 4 the probability that Alice gets the raw key bit 0 and Bob observes
|[+)B (see Table 5.3). Similarly, we denote by p; 4 the probability that Alice gets the
raw key bit 1 and Bob observes |+)p. These probabilities are:

pos = ’E(”Ejﬁ'm = & (B0l Bo)e + (B1| By + 2R{E|By)) . (5.20)

po = PR L (i ¢ B + 2REES) . 621
Therefore, we find:

R(Eo|E1)E = 2po,+ — ((Eo|Eo)r + (E1|E1)E) , (5.22)

R(E>|E3)E = 2p1,+ — ((E2| E2)E + (B3| E3)E) - (5.23)

5.3.4 “Test” Rounds: Alice Chooses the CTRL Operation

In “test” rounds, Eve sends to Alice her state [t0o) 2 > m,>0 [M1,M0)B|€my mo)E (See
mo>0

Equation (5.5)), and Alice chooses the CTRL operation—namely, Alice does nothing
(see Equation (5.1)). Then, Eve applies her second attack Ug (see Equation (5.7)), and

the resulting quantum state is:

URW]0> = |07 1>B Z ’gml m0>E+|170>B Z |gm1 m0>E+|OaO>B Z |gm1 m0> . (524)

m12>0 m1>0 m1>0
mo>0 mo>0 mop>0
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(a) Standard “Test” Rounds: Bob Chooses the x Basis

Changing basis, whereby [0, 1)p % and |1,0)p %, we find:
Urlto) = s > 1gd + > gy 4+ (5.25)
0 \/§ ml,mo E gml,mo ’ :
m1>0 m1>0
mp=>0 mop>0
where the extra --- term is irrelevant to our discussion.

Let p4 4 be the probability that Bob observes |+)g (see Table 5.3). From Equa-
tion (5.25) we deduce:

b++ = \/* Z ‘gml,mo E+ —= Z |gm1,m0 (5.26)
m1>0 m1>0
m0>0 m0>0

= |(|Eo)e + [E2)E — |g0)E + |ho)E) + (| E1)E + | Es)E — [91)E + [h1)E)|?
= [|Eo)e + |E2)E — |90)E + |ho)el + ||EV)E + | E3)E — |91)E + |h1)El
+ 2R[((Eolg + (E2lg — {(90lg + (holg) - (|EDE + [E3)E — [91)E + [h1)E)]

where we define:

I o1
7’907O>Ea

2
1,0
7O>Ev

—=lg
\/‘ 0
5 Z ‘gml,mo

m1>1
m0>1

f D 1980 e (5.27)

mi1>1
m0>1

(>

|90>E

S

(>

|91>E

(1>

|ho)®

(1>

|h1)®

and we remember from Equation (5.11) that:

1 0,1
‘E0>E £ = ‘07m0>E’

\/§m020

1 1,0
|Ei)g & — 1907mo ) B

ﬂmozo ’

1 0,1
|Ex)p & — |Gy 0)

\/5777,120 '

1 1,0
|E3)E = ﬁ \gml’ )E- (5.28)

m1>0



(b) Mismatched “Test” Rounds: Bob Chooses the z Basis

In this case, we denote by pergr:o the probability of Bob observing |0, 1)p (see Table 5.3).
From Equation (5.24), we find (similarly to the computation of p; ):

2

PCTRL:0 = Z 9ot o E| = 2| E0)E + | E2)E — [g0)E + [ho)el*- (5.29)

m1>0
mo>0

Similarly, denoting by pcrre:1 the probability of Bob observing |1,0)p, we find:

2

porret = | Y 19w me)B| = 2[|EV)E + [Bs)e — |g1)E + [h)zl*- (5.30)

m1>0
mo>0

5.3.5 “SWAP-ALL” Rounds: Alice Chooses the SWAP-ALL Opera-

tion, and Bob Chooses the z Basis

(a) The Probability of a “Double-Click” Event: Used for Upper-Bounding
(holho)r and (hi|h1)r

In “SWAP-ALL” rounds, Eve sends to Alice the initial state [t0) £ Y 1, >0 |1, M0)B|€my.mo ) E
described in Equation (5.5), and Alice chooses the SWAP-ALL of)réori%ion defined in
Equation (5.4), which essentially means that Alice measures subsystem B and sends a
vacuum state towards Bob.

Let us denote by pgoupie the probability that Alice observes a “double-click” event
(detecting a photon in both modes |o) and |1))—mamely, that she measures a state

|m1, mo)A,,. where myi,mg > 1 (see Table 5.3). This probability is easily found to be:

Pdouble = Z <em1,mo|€m1,mo>E' (531)

my>1
mo>1

We can thus prove the following Lemma:

Lemma 5.1. (hglho)g < %pdouble and (h1|h1)g < %pdouble; where |ho)g, |h1)g were
defined in Equation (5.27).

Proof. Let us define the non-normalized state |¢) as:

A 1
IC) = 7 mlzz1 M1, mo)B|€m: mo) E- (5.32)

mo>1

(We use the state |¢) only for this algebraic proof; it does not appear in the protocol.)
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Clearly:
1

Z <€m1,m0|€m1,m0>E = 5 DPdouble- (5.33)

(<l) = ;

N |

mi1>1
mo>1

Applying Uy (see Equation (5.7)), the state |¢) evolves to:

1
UrlC) = 7 Z (10, D)Blgm node + 11,0)8l95° mo)E + 10,008199 10 )E)
mi1>1
mo>1
10, 1)Blho)E + [1,0)B]h1)E + |0, 0)B|Avac)E (5.34)

(where |ho)E, |h1)E were defined in Equation (5.27), and |hyac)E = % Zml%% 1990 o) E).-
mo>

By unitarity of Ugr, we have:

%pdouble = <C|<> = <h0|h0>E + <h1‘h1>E + <hvac|hvac>E> (535)

which implies that (ho|ho)g+ (h1]|h1)E < %pdouble. Since both (hg|ho)g and (hq|hi)g are
non-negative, this implies (ho|ho)g < %pdouble and (hy|h1)g < %pdouble, as we wanted.[]

(b) The Probability of a “Creation” Event: Used for Computing (go|g0)r
and (g1]91)

Let pereate:0 denote the probability that Alice observes |0,0)4,,. (namely, a vacuum
state) and Bob observes |0,1)p (see Table 5.3). In this event, Eve “creates” (on the
way from Alice to Bob) a photon in the |0) mode that should not have existed. (See
Section 4.2 for examples of such attacks.) Similarly, let pereate:1 denote the probability
that Alice observes |0,0)4,,. and Bob observes |1,0)p.

After Eve sends the initial state [10g) £ > >0 M1, 70)B|€m; mo)E described in
m0>0

Equation (5.5), and after Alice applies the SWAP-ALL operation defined in Equa-
tion (5.4), the resulting state is:

anc

> 1M1, m0) A0, 0)B€m, mo ) E- (5.36)

m1>0
mo>0
For computing the probabilities pcreate:0 and pereate:1, We need to analyze the term

where Alice observes |0,0)4,,.—namely, the term [0,0)4,,.|0,0)Bleg0)r. Now, Eve’s

anc

second attack applies the unitary operator Ug (described in Equation (5.7)) to this

non-normalized term, which gives the following final result:

0,0) 2, SURIO, 0)8le0.0)1 = 10, 0) e @ 10, sl 55 + 1, 0)l950)m + 10, 0) w90 e

(5.37)
Since Pereate:0 is the probability that Alice observes |0,0)4,,. and Bob observes |0,1)p
(and similarly for pcreate:1), we get, according to the definitions of |go)g, |g1)p In
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Equation (5.27):

Dcreate:0 = <98:é|98:é>E:2<90|90>Ea (538)
Pcreate:1 = <g(l):8|g(l):8>E:2<gl|gl>E (539)

5.3.6 Deriving the Final Key Rate

We remember that the final normalized state of the joint system after Bob’s measurement,
in standard “raw key” rounds where raw key bits are generated, is, according to
Equation (5.13):

1
pase = 77 (l00)(00]ap @ | Eo){Eolg + [o1){o1|ap ® [E1)(Erlg
+[10)(10[aB © [E2)(Ealg + [11)(11]aB © |E3) (E3]g)- (5.40)

Theorem 1 from [Kral7] allows us to mathematically compute a bound on the

conditional von Neumann entropy S(A|E) of paBg, as follows:

(Eo|Eo)e + (E3|Es) (Eo|Eo)
S(A|E) > olL0o EM 3IE3/E |:H2 <<E0|E0>EO+(<]EE3|E3>E> —HQ()\l):|(5.41)

(B1|E1)E + (E2|Es) (E1|E1)
— EM — [H2 <<E1|E1>E1+zf§2\E2>E> _H2(/\2)} ’

where:

1 \/(<E0\E0>E — (B3| E3)r)” + 4R2(Eo| E3)p

oSt 2 ((Fol Foys + (Bs|Bs)r) B
o1 VBB — (Bo| Ea)e) + 4R (B1] o)

=gt 2((E1|Er)E + (B2|E2)E) ’ (5.43)

Hy(x) £ —zlogy(z) — (1 — x)logy(1 — x). (5.44)

Thus, to complete our proof of security, we only need bounds on the quantities
R(Ep|E3)r and R(E1|Es)g; all the other parameters in the above expressions ((Ey|Eo)g,
(E1|E1)E, (E2|E9)g, (E3|Fs)g, and M) are observable probabilities that appear in
Table 5.3 and can be directly computed by Alice and Bob.

We thus expand Equation (5.26) and substitute Equations (5.22)-(5.23) and (5.29)—
(5.30) (all appearing in Table 5.3):

|Eo)E + | E2)E — |90)E + [ho)e|” + || E1)E + |E3)E — |g1)E + [h1)E[
+ 2R[((Eolg + (E2lg — (90lg + (holg) - (IE1)E + |E3)E — [91)E + |h1)E)]

Pt .+

5 (PetRL:0 + PeTRL:1)

+ 2R ((Eolg + (EB2lp) (EV)E + [E3)e) — 2R ((Eolg + (E2lp) (l90)E — [h1)E)
— 2R ({90lg — (holg) ([E1)E + [E3)r) + 2R (g0l — (holg) (I91)E — h1)r)
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1
§(pCTRL:0 + Petrr:1)

2po,+ — ((Eo|Eo)e + (E1|E1)E) + 2R(Eo| E3)E
2p1,4+ — ((B2|E2)E + (E3|E3)E) + 2R(E1| E2)E

+ o+

— 2R ((Eolg + (E2lg) (91)E — |[h1)E) — 2R ({90l — (holg) (|E1)E + [E3)E)

+ 2R ((golg — (holg) (l91)E — |h1)E) -

(5.45)

The resulting equation is: (substituting Equation (5.18), which appears in Table 5.3)

1

1 1
R ((Eo|E3)E + (E1|E2)E) = oP++ T PO+ T PLt Z(pCTRL:O + perrL:1) + §M

+ 4

R((91lg = (mlp) (IE0)E + [E2)E)
R ((olg = (holg) (IEVE + |E3)E)
= R({golg = (holg) (Ig1)E = [P1)E) -

(5.46)

By the Cauchy-Schwarz inequality, Lemma 5.1, and Equations (5.38)—(5.39) (all appear-

ing in Table 5.3), we determine the following bound:

1 1

1
8%(<E0|E3>E + <E1|E2>E) > ZD+,+ — P04+ —Pl+ — Z(pCTRL:O +pCTRL:1) + §M

2

2

(\/pcreatezl + \/pdouble) (\/<EO|EO>E + \/<E2|E2>E)

SESE

2

N | =

(\/pcreate:[) + \/pdouble) (\/<E1|E1>E + \/<E3|E3>E)

(\/pcreate:O + \/pdouble) (\/pcreate: 1+ \/pdouble) (547)

To compute S(A|E), we will simply minimize Equation (5.41) with respect to the

condition outlined above and the following conditions (resulting from the Cauchy-

Schwarz inequality):

I R(Eo|Es)E

IN

V{(Eo|Eo)E - (E3|Es)g,

|
IR(EV|E2)ul < V(EW|E)E - (E2|E2)e.

In addition, we need to compute the expression H(A|B):

H(A|B) = H(AB) — H(B),

where:

Eo|Eo)e (Er|Ev)e (Eo|Eo)r (E3|E3)w

_ {
H(AB)_H( T T =

H(B) = H <<E0‘E0>E + (E2|Eo)p (E1|E1)E + (B3| E3)E

M )
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(5.52)



The final key rate expression is given by the Devetak-Winter key rate formula [DWO05]:

— S(A|E) — H(A|B), (5.53)

using S(A|E) and H(A|B) computed above.

5.3.7 Algorithm for Computing the Key Rate

The following algorithm allows us to compute the key rate for any noise model and

experimental data:

1. Estimate all probabilities and inner products listed in Table 5.3. (All these

probabilities can be computed by Alice and Bob in the classical post-processing

stage.)

2. Compute the minimal value of the lower bound for S(A|FE) presented in Equa-

tion (5.41), which is copied here:

S(A|E) > <E0\E0>EA‘;<E3’E3>E . [H2 <<E0’ESSE?E’E3>E> _ H2(/\1)]
(E1|Ev)E + (B2 E2)g (Er|E)E
+ i . |:H2 <<E1E1>E—|— <E2|E2>E> - HZ(AQ)] )
(5.54)
where
o1 (BB — (EslEs)e)? + 4% (B | Ba)s
oS gt 2 (ol Bo}s + (B3| B)p) » (559)
o1 (BB — (B2 Ba))® + AR2(E| Ba)p
o =gt 2 ((Br| By + (B o) » (559)
Hy(z) 2 —xlogy(x) — (1 —2)logy(1 — ), (5.57)

where the minimum is taken over ®(Ey|E3)g and R(E1|E2)g, subject to the three

following constraints:

R ((Eo|E3)E +

|R(Eo| E3)E
|R(E1|E2)E

(Er|E2)E)

Y

1 1

1
§P+,+ —Po+ — D1+ — Z(pCTRL:O + peree:1) + §M

\}i (\/pcreatezl + \/pdouble) (\/<EO|EO>E + \/<E2’E2>E>

(\/pcreate:O + \/pdouble) (\/<E1|E1>E + \/<E3’E3>E)

—_
[\

(\/pcreate:() + \/pdouble) (\/pcreate:l + \/pdouble) ) (558)
\/ Eo|Eo)g - (E3|E3)E, (5.59)
V(E1|E1)g - (Es|E2)E. (5.60)

(
(E
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Note that we evaluate the minimum because we assume the worst-case scenario—
namely, that Eve chooses her attack so as to minimize S(A|E) (and, thus, minimize

the key rate r).

In practice, we can minimize over a single parameter (say, (E1|F2)g), and take
the other one (R(Ey|Es3)g) as the right-hand-side of Equation (5.58), minus the
free parameter R(E1|E2)g (but not less than 0). This will give us the minimum,
because for any given value of R(E)|Es)g, it is beneficial for Eve to have the

smallest possible (non-negative) value of R(Ey|FE3)g.

3. Compute H(A|B) using the observed parameters:

H(A|B) = H(AB)— H(B)
_ H<<E0!E0>E (B1|EV)E (Ba|Es)r <E3|E3>E)

M ’ M ’ M ’ M
I (<E0!EO>E + (E2|E2)r (Er|Ev)E + (E3|E3)r

7 : 7 > . (5.61)

4. Find the final key rate expression, using the Devetak-Winter key rate formula [DWO05]:

r = S(A|E) — H(A|B). (5.62)

5.4 Examples

The key rate bounds we found in Section 5.3 work in a wide range of scenarios, and they
can be evaluated for all the possible values of all probabilities in Table 5.3. We would
now like to evaluate our bounds for two concrete scenarios, that are easily comparable
with attacks on other QKD and SQKD protocols.

5.4.1 First Scenario: Single-Photon Attacks without Losses

In the first scenario, let us assume that Bob has a perfect qubit source (no multi-photon
pulses) and there are no photon losses. Furthermore, let us assume that Eve does not
perform a multi-qubit attack at all (not even in her first attack). In this scenario, the
only free parameters are the noises QQz, @x in the channel: @z is the probability that a
|0, 1)p state is flipped into |1,0)p (and vice versa) in “raw key” rounds, and Qx is the
probability that a |[+)p state is flipped into |—)p in “test” rounds.

We consider the following noise model:

e In the “raw key” rounds, we consider that both the forward channel (from Bob to
Alice) and the reverse channel (from Alice to Bob) are depolarizing channels with

error (7, as follows:
I
£02(p) = (1= 2Qz)p +2Qz - . (5.63)
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e In the “test” rounds, we consider that the whole channel (from Bob to Alice and
back to Bob; notice that Alice does nothing in such rounds) is a depolarizing

channel with error Qx, as follows:

I
€ox(p) = (1 =2Qx)p +20x - 5. (5.64)
Here, in the forward attack, Eve always replaces Bob’s original state |0,1)xp 2
w by the following state (a special case of Equation (5.5)):
[90) = |0, 1)Bleo,1)E + [1,0)Ble1,0)E, (5.65)

with (eo,1]e0,1)E = (e10le1,0)E = 3-

5.4.2 Second Scenario: Single-Photon Attacks with Losses

In the second scenario, our noise model remains identical to the first scenario, except

two modifications:

e In the forward channel (from Bob to Alice), a loss occurs with probability p?; if it

does not occur, the original noise model is applied.

e In the reverse channel (from Alice to Bob), a loss occurs with probability pf‘; if it

does not occur, the original noise model is applied.

We assume, in particular, that a loss is final: if a loss occurs in the forward channel, no

photon will ever be observed in this round by either Alice or Bob.

5.4.3 Evaluation Results

In Table 5.4 we evaluate all probabilities in both scenarios.

Table 5.4: Computing all probabilities in Table 5.3 for both examples (both scenarios).

Probability Single-Photon; no Losses Single-Photon + Losses

(Eo|Eo)E = (E3|E3)E = 1(1-Qz) 11=p)) A =pH(1 - Qz)
(Er|E1)g = (Ba|Eo)r = 1Qz 11 —p))(A —pf)Qg
M= Z T =pH (I —pp)
PO+ =Pt = 5 s —p)(1—p))
Pis = 1-Qx (1-p})A—pH(1 - Qx)

PCTRL:0 = DCTRL:1 = %(1 _PE)(l —p?)

I
2
Pdouble = 0 0
0 0

Dcreate:0 = Pcreate:1 =

61



First scenario—single-photon attacks without losses: Substituting the prob-
abilities from Table 5.4 in Equations (5.58)—(5.60), we find the three constraints to
be:

R(Eo| sl + (BrlEae) > |- 5@, (5.66)
BB Es)sl < (- Qa), (567
IR(E1|E2)E| < %Qz (5.68)

As explained in Subsection 5.3.7, we numerically find the minimal value of the key-rate
expression r = S(A|E) — H(A|B) for various values of Q7 x by using the lower bound
on S(A|E) presented in Equation (5.54), which is evaluated under the three above
constraints on the values of R(Ey|Es)r and R(E1|Es)g. This numerical optimization

yields the graph shown in Figure 5.1, presenting two cases:

e In the dependent noise model, where the error rates Qx and @z are identical

(namely, Qx = Qz), we recover the asymptotic BB84 noise tolerance of 11%.

e In the independent noise model, where the two-way channel is modeled as two
independent depolarizing channels (namely, Qx = 2Qz(1 — Qz)), the maximal

asymptotic) noise tolerance is 7.9%.
ymp

Interestingly, both values agree with the values found in [Kral7] for the original “QKD
with Classical Bob” SQKD protocol [BKMOT7].

In both scenarios, because the Mirror protocol is two-way, we compare it to two
copies of BB84 performed from Alice to Bob; this is a common comparison for two-
way protocols (see, for example, [BLMR13]). The key rate of two copies of BB84 is
2(1 — 2Hs(p))—mamely, twice the original key rate of BB84.

Second scenario—single-photon attacks with losses: Substituting the proba-
bilities from Table 5.4 in Equations (5.58)—(5.60), we find the three constraints to
be:

RUEIED: + (BB = (-0 (1-50x). 6o
BB sl < (- p)1 P01 - Qa), (5.70)
REBdel < 31— pD)1 — Qs (571)

The numerical analysis for this scenario is similar to the previous one. However, here
we must also model the loss rates, so we consider a fiber channel with loss rates
pE’R = 1-10" (where a = 0.15% is the loss coefficient, and ¢ is measured in
kilometers). We consider two examples of fiber lengths: ¢ = 10km and ¢ = 50km.

Results are presented in Figure 5.2.
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Figure 5.1: A graph of the final key rate versus the noise level of the Mirror
protocol in the first scenario (single-photon attacks without losses), for dependent
(Qx = Qz) and independent (Qx = 2Qz(1 — Qz)) noise models, compared to two
copies of BB84.
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Figure 5.2: A graph of the final key rate versus the noise level of the Mirror
protocol in the second scenario (single-photon attacks with losses), compared to
two copies of BB84, for two possible lengths of fiber channels (¢ = 10km and ¢ = 50km).
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5.5 Conclusion

We have proved security of the Mirror protocol against uniform collective attacks,
including attacks where the adversary Eve sends multiple photons towards the classical
user (Alice). Our analysis shows that the asymptotic noise tolerance of the Mirror
protocol is comparable, in the single-photon scenario, to the “QKD with Classical Bob”
protocol [BKMO7, Kral7] and even to the BB84 protocol. Moreover, we have suggested
a general framework for analyzing multi-photon attacks; this framework may be useful
for other QKD and SQKD protocols, too.

We conclude the Mirror protocol is theoretically secure against uniform collective
attacks, and we suspect similar security results can be achieved for general attacks.
Extensions of our results, such as security against general attacks, security against
multi-photon attacks on both channels, and evaluation of our key-rate formula in the
multi-photon case, are left for future research. Our extension to multi-photon attacks
also suggests the intriguing possibility of analyzing SQKD protocols employing decoy
states and similar counter-measures against practical attacks.

Our results show that SQKD protocols can potentially be implemented in a secure
way, overcoming the practical attacks suggested by [TLC09, BKMO09]. They therefore
hold the potential to transform the SQKD protocols, making them not only theoretically

fascinating, but also practically secure.
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Chapter 6

Composable Security of the

“BB84-INFO-z” Protocol Against
Collective Attacks

In this chapter, we present a fully composable security proof of a new QKD protocol,
that we name “BB84-INFO-z”, against collective attacks (described in Subsection 2.3.2).
The proof uses BBBMR's security approach, that is described in Subsection 2.3.3.

This chapter is based on a paper published in Theoretical Computer Science in 2020
by Michel Boyer, Rotem Liss, and Tal Mor [BLM20].

This is an extended (journal) version; the conference version was presented in the
COMPLEXIS conference in 2017 by the same authors [BLM17] and was part of my M.Sc.
thesis [Lis17], but its security proof was not fully composable. This journal version is

extended to make the security proof (against collective attacks) fully composable.

6.1 Introduction

In this chapter, we extend the security proof of BB84 against collective attacks given
in [BGMO09], and we prove security of a QKD protocol we shall name “BB8/-INFO-z”
against collective attacks. This protocol is almost identical to BB84, except that all
its INFO bits are in the z basis; in other words, the x basis is used only for testing.
The bits are thus partitioned into three disjoint sets: INFO, TEST-Z, and TEST-X, of
arbitrary sizes (n INFO bits, n, TEST-Z bits, and n, TEST-X bits).

Unlike the other papers that discussed BBBMR’s security approach [BM97b, BM97a,
BBBGMO02, BBBMR06, BGM09] (see Subsection 2.3.3 for details), here we prove
fully composable security of BB84-INFO-z against collective attacks. The method
implemented in this chapter also directly applies to the BB84 security proof of [BGM09]
against collective attacks, proving the fully composable security of BB84 against collective
attacks. In Chapter 7 we further extend this method to show that the BB84 security
proof of [BBBMRO6] proves the fully composable security of BB84 (and, furthermore, of
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many BB84-like protocols) against joint attacks. (We note that in the conference version
of this chapter [BLM17], we used a weaker security definition: it was not sufficient for

proving fully composable security, but it was more composable than in previous papers.)

6.2 Full Definition of the “BB84-INFO-2” Protocol

Below we formally define all steps of the BB84-INFO-z protocol, as used in this chapter.
See Section 2.7 for an explanation of the notation of bit strings (s, b, etc.), and see

Section 1.1 for an explanation of the notations |o%), [1%), [o%), [11).

1. Before the protocol, Alice and Bob choose some shared (and public) parameters:
numbers n, n,, and n,; (we denote N £ n + n, + ng), error thresholds Pa,> and
Da,z, a0 7 X n parity check matrix Po (corresponding to a linear error-correcting
code C), and an m X n privacy amplification matrix Pk (representing a linear
key-generation function). It is required that all 7 + m rows of the matrices Pc

and Pk put together are linearly independent.

2. Alice randomly chooses a partition P = (s,z,b) of the N bits by randomly
choosing three N-bit strings s,z, b € FY that satisfy |s| = n, |z| = n., |b| = na,
and |s +z + b| = N. Thus, P partitions the set of indexes {1,2,..., N} into three

disjoint sets:

e I (INFO bits, where s; = 1) of size n;
e Ty (TEST-Z bits, where z; = 1) of size n; and
o Tx (TEST-X bits, where b; = 1) of size n,.

3. Alice randomly chooses an N-bit string i € FY and sends the N qubit states
|z'l{1), |z'32>, e \i?{ﬁ, one after the other, to Bob using the quantum channel. Notice
that Alice uses the z basis for sending the INFO and TEST-Z bits, and that she
uses the z basis for sending the TEST-X bits. Bob keeps each received qubit in

quantum memory, not measuring it yet!.

4. Alice sends to Bob over the classical channel the bit string b = b;...bx. Bob
measures each of the qubits he saved in the correct basis (namely, when measuring
the i-th qubit, he measures it in the z basis if b; = 0, and he measures it in the z
basis if b; = 1).

The bit string measured by Bob is denoted by iP. If there is no noise and no

eavesdropping, then i® = i.

! Here we assume that Bob has a quantum memory and can delay his measurement. In practical
implementations, Bob usually cannot do that, but is assumed to measure in a randomly-chosen basis (z
or x), so that Alice and Bob later discard the qubits measured in the wrong basis. In that case, we
need to assume that Alice sends more than N qubits, so that N qubits are finally detected by Bob and
measured in the correct basis. In the original scheme, the probability of choosing each basis (z or x)
was 3, which caused half of the sent qubits to be lost; in the improved scheme suggested by [LCA05],
the probability of choosing the z basis can be much higher, which means that fewer qubits get lost.
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5. Alice sends to Bob over the classical channel the bit string s. The INFO bits
(that will be used for creating the final key) are the n bits with s; = 1, while the
TEST-Z and TEST-X bits (that will be used for testing) are the n, + n, bits with
sj = 0. We denote the substrings of i, b that correspond to the INFO bits by ig

and bg, respectively.

6. Alice and Bob both publish the bit values they have for all the TEST-Z and
TEST-X bits, and they compare the bit values. If more than n. - p, . TEST-Z
bits are different between Alice and Bob or more than n, - p, ., TEST-X bits are
different between them, they abort the protocol. We note that p, . and p,, (the
pre-agreed error thresholds) are the maximal allowed error rates on the TEST-Z

and TEST-X bits, respectively—namely, in each basis (z and x) separately.

7. The values of the remaining n bits (the INFO bits, with s; =1) are kept in secret
by Alice and Bob. The bit string of Alice is denoted x = ig, and the bit string of
Bob is denoted xB.

8. Alice sends to Bob the syndrome of x (with respect to the error-correcting code C
and to its corresponding parity check matrix Pc), that consists of r bits and is
defined as £ = ng . By using &, Bob corrects the errors in his x® string (so that

it is the same as x).

9. The final key consists of m bits and is defined as k = xP{. Both Alice and Bob

compute it.

The protocol is defined similarly to BB84 (and to its description in [BGMO09]), except
that it uses the generalized bit numbers n, n,, and n, (numbers of INFO, TEST-Z,
and TEST-X bits, respectively); that it uses the partition P = (s, z, b) for dividing the
N-bit string i into three disjoint sets of indexes (I, Tz, and Tx); and that it uses two
separate thresholds (p, . and p, ) instead of one (pg).

6.3 Security Proof for the BB84-INFO-z Protocol Against
Collective Attacks

6.3.1 The General Collective Attack of Eve

Before the beginning of the QKD protocol (and, thus, independently of i and P), Eve
chooses some collective attack to perform. A collective attack is bitwise: it attacks
each qubit separately, by using a separate probe (ancillary state). Fach probe is
attached by Eve to the quantum state, and Eve saves it in a quantum memory. Eve
can keep her quantum probes indefinitely, even after the final key is used by Alice and
Bob; and she can perform, at any time of her choice, an optimal measurement of all

her probes together, chosen based on all the information she has at the time of the
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measurement (including the classical information sent during the protocol, and including
the information she acquires when Alice and Bob use the key).

Given the j-th qubit \i;)-j)Tj sent from Alice to Bob (1 < j < N), Eve attaches a
probe state |0E>Ej and applies some unitary operator U; of her choice to the compound
system |OE>EJ. ]z'g-j )T;- Then, Eve keeps to herself (in a quantum memory) the subsystem
E;, which is her probe state; and sends to Bob the subsystem T, which is the qubit
sent from Alice to Bob (which may have been modified by her attack Uj).

The most general collective attack U; of Eve on the j-th qubit, represented in the

orthonormal basis {[o%)r,,|1%)1,}, is

) b . b )
Uj|OE>Ej|Ob]>Tj = |E06>Ej‘obJ>Tj+|EOJ1>Ej|lb]>Tj7 (6'1)

) b . b )
Uj|OE>Ej|lb]>Tj |E16>Ej‘obJ>Tj + |E1]1>Ej|lb]>Tja (6'2)

where |E86)Ej, |Eg{>Ej, ]E%)Ej, and |Ef]1>E] are non-normalized states in Eve’s probe
system E; attached to the j-th qubit.

We thus notice that Eve can modify the original product state of the compound
system, |0E)Ej|z'l;j>Tj, into an entangled state (e.g., |E8{)>Ej|obj)T]. + |Eg{>Ej|1bi>Tj).
Eve’s attack may thus cause Bob’s state to become entangled with her probe. On
the one hand, this may give Eve some information on Bob’s state; on the other hand,
this causes disturbance that may be detected by Bob. Our security proof shows that
the information obtained by Eve and the disturbance caused by Eve are inherently

correlated: this correlation is the basic reason QKD protocols are secure.

6.3.2 Results from [BGMO09]

The security proof of BB84-INFO-z against collective attacks is very similar to the
security proof of BB84 itself against collective attacks, that was detailed in [BGMO09].
Most parts of the proof are not affected at all by the changes made to BB84 to get the
BB84-INFO-z protocol (changes detailed in Section 6.2 of this chapter), because these
parts assume fixed strings s and b, and because the attack is collective (so the analysis
is restricted to the INFO bits).

Therefore, the reader is referred to the proof in Section 2 and Subsections 3.1-3.5
of [BGMO09], that applies to BB84-INFO-z without any changes (except changing the
total number of bits, 2n, to NV, which does not affect the proof at all), and that will not
be repeated here.

We denote the rows of the error-correction parity check matrix Pc as the vectors

v1,...,v, in F5, and the rows of the privacy amplification matrix Pk as the vectors
Vpil, .-, Ursm. We also define, for every ', V,» = Span{vy, ..., v }; and we define

drn 2 min  dg(vpe1,Ve) = min  dyg. 6.3

P < rm (v 1, Vi) r<r’<r4m (6:3)

For a 1-bit final key & € {0, 1}, we define pj, to be the state of Eve corresponding to
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the final key k, given that she knows £. Thus,

-~ 1 /
Pk = on=r—1 Z PE , (6.4)
ng =¢

x|
X -Upy1 =k

where p;’, is Eve’s state after the attack, given that Alice sent the INFO bit string x
encoded in the bases b’ = bs. In [BGMO09], the state pj was also defined: it is a lift-up
of i, (which means that p, is a partial trace of py), in which the states p? appearing in
pr, are replaced by their purifications (see full definition in Subsection 3.4 of [BGMO09]).

In the end of Subsection 3.5 of [BGMO09], it was found that (in the case of a 1-bit
final key, i.e., m = 1)

| d —
2tr|po—m§2\/Pr ['CIIZ | Bi=P.s|, (6.5)

where Cj is a random variable whose value is the n-bit string of errors on the n INFO
bits; By is a random variable whose value is the n-bit string of bases of the n INFO bits;
b’ is the bit-flipped string of b’ = bg; and d,.; (and, in general, d,m) was defined above.

Now, according to [NC00, Theorem 9.2 and page 407], and using the fact that py is
a partial trace of py, we find that %tr lpo — p1| < %tr |po — p1|. From this result and
from inequality (6.5) we deduce that

dr,l

ot | Br=0,s|. (6.6)

1, .
§tr|Po —p1] < 2\/Pr [|CI| >

6.3.3 Bounding the Differences Between Eve’s States

We define ¢ £ i+ iP: namely, c is the XOR of the N-bit string i sent by Alice and of
the N-bit string i® measured by Bob. For all indexes 1 < ¢ < N, ¢, = 1 if and only if
Bob’s ¢-th bit value is different from the ¢-th bit sent by Alice. The partition P divides
the N bits into n INFO bits, n, TEST-Z bits, and n, TEST-X bits. The corresponding
substrings of the error string ¢ are cg (the string of errors on the INFO bits), ¢, (the
string of errors on the TEST-Z bits), and cp, (the string of errors on the TEST-X bits).
The random variables that correspond to cg, ¢4, and cp, are denoted by Cy, Ct,, and
Cr,, respectively.

We define a to be a random variable whose value is the string of errors on the
INFO bits if Alice had encoded and sent the INFO bits in the x basis (instead of the z
basis dictated by the protocol). In these notations, Equation (6.6) reads as

I . ~ _ d ~ _ dr
§tr\p0 — 1| < 2\/Pr [\Cll > 71 ] P] = 2\/Pr {]Cﬂ > 2’1 | ¢z,cp,P|, (6.7)

using the fact that Eve’s attack is collective, so the qubits are attacked independently,
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and, therefore, the errors on the INFO bits are independent of the errors on the TEST-Z
and TEST-X bits (namely, of ¢, and cy,).

As explained in [BGM09], Equation (6.7) was not derived for the actual attack
U=U;®...®Uy applied by Eve, but for a virtual flat attack (that depends on b and
therefore could not have been applied by Eve). That flat attack gives the same states
po and p; as given by the original attack U, and it gives a lower (or the same) error rate
in the conjugate basis. Therefore, Equation (6.7) holds for the original attack U, too.
This means that, starting from this point, all our results apply to the original attack U
rather than to the flat attack.

So far, we have discussed a 1-bit key. We will now discuss a general m-bit key k.

We define pi to be the state of Eve corresponding to the final key k, given that she

knows &: .
~ b’
=g DL PR (6.8)
xPT =¢
xPf =k

Proposition 6.1. For any two keys k,k’ of m bits,

%mﬁk el < 2m\/Pr [@ > d’;’” | cyycm P (6.9)
Proof. We define the key k;, for 0 < j < m, to consist of the first j bits of k' and the
last m — j bits of k. This means that ko = k, k,,, = k/, and k;_; differs from k; at
most on a single bit (the j-th bit).

First, we find a bound on %tr |Px;_, — Pk;|: since k;_; differs from k; at most on
a single bit (the j-th bit, given by the formula x - v,1;), we can use the same proof
that gave us Equation (6.7), attaching the other (identical) key bits to & of the original
proof; and we find that

1 - —~ d;
itr ’pkjfl _pkj’ < 2\/PI‘ |:‘CI > EJ ‘ CZ,Cb,P ; (61())

A
where we define d; as dy (v, Vj’), and Vj’ £ Span{v1,v2, ..., Vrgj1; Urtjtls - - > Urgm )
Now we notice that d; is the Hamming distance between v,; and some vector in
/
Vi,
Hamming distance assure us that d; is at least dg(v,/41,V,r) for some r <’ <r+m.

which means that d; = |Z:;L{” awi‘ with a; € Fg and a,4; # 0. The properties of

Therefore, we find that d,,, = min,<,/<pypm du(ve41, Vir) < dj.

The result d,.,, < d; implies that if |a| > % then |a| > dg’m. Therefore, Equa-

tion (6.10) implies

1 . ~ _d
5 1Pk, 1 — P | <2\/Pr [\CI] > % | ¢z cp, P (6.11)
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Now we use the triangle inequality for norms to find

m

S TR 1
5t 1k = Bl = St Piey — Dl < D 5 10 [Pie,y — |

j=1
< Qm\/Pr [ C;

as we wanted. O

cb,P], (6.12)

We would now like to bound the expected value (namely, the average value) of the
trace distance between two states of Eve corresponding to two final keys. However, we
should take into account that if the test fails, no final key is generated, in which case
we define the distance to be 0. We thus define the random variable A(Ep“,‘éz’p “’””)(k, k') for
any two final keys k, k'

I P (A [cp|
ptripk — pe| it < Pa,» and < Pa,
ALz ( KP, €, cqcp) 24 2 | | n, ~ 7 ng — "
0 otherwise
(6.13)
We need to bound the expected value (Agjj’p“’z)(k, k’)), that is given by:
(AFesre k) = Y ALk K|P, € cpcp) - Pr(P, €, carep).  (6.14)

P.£,cz,Ch

(In Subsection 6.3.6 we prove that this expected value is indeed the quantity we need to

bound for proving fully composable security, defined in Subsection 2.3.1.)

Theorem 6.2.

(A 1, 1)) < 2my [Pe [ (19 > ) & (1S < ) (19 <),
(6.15)

[C1l s 4 random variable whose value is the error rate on the INFO bits if they

where

. . |Cr,| . . .
had been encoded in the x basis, — % is a random variable whose value is the error rate
4

on the TEST-Z bits, and ‘CTszl 1s a random variable whose value is the error rate on
the TEST-X bits.

Proof. We use the convexity of x2, namely, the fact that for all {p;}; satisfying p; > 0
and ), p; = 1, it holds that (_, pizi)? < > piz;. We find that:

(AlPaePes) (1 1))

= | 3 AP (kK& ¢z cp) - Pr(P,E,cpuch) (by (6.14))
P&,cz,cb
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2
< > (AR K€ ) Pr(P.E cycn) (by convexity of z%)

P7€7C27cb

= > (307 — Biel)” - Pr(P, €, ¢5y 1) (by (6.13))
Pelzlap, . oolap, ,
< dm?.- ) Pr[|Cll = %5 | ey0n,P] - Pr(P, £, 0y 1) (by (6.9))
7’,&%'Spa,z,%§pa,z
—4m?2. Z Pr [\a\ > dTT’m | cz,cb,’P} - Pr(P, ¢z, cp)

c
P M<pa,z,%§pa,z

Y, —

—am?. S Pr[(1C1 > S ) A (182 <pe) 2 (195 <) 1 P] PP
2

=am? Pr[(1C1 = 52 ) A (12 < po) A (B2 <) (6.16)

as we wanted. O

6.3.4 Proof of Security

Following [BGMO09] and [BBBMRO06], we choose matrices Pc and Pk such that the

inequality dg;;" > Do + € is satisfied for some e (we will explain in Subsection 6.3.7 why

this is possible). This means that

pri(S 2 Ge) A (52 < pe) A (52 < 00|
C; C
< Pr [(% > Do + e) A (% < pmﬂ . (6.17)

We will now prove the right-hand-side of (6.17) to be exponentially small in n.

As said earlier, the random variable 6/1 corresponds to the bit string of errors on the
INFO bits if they had been encoded in the = basis. The TEST-X bits are also encoded
in the x basis, and the random variable Cr, corresponds to the bit string of errors on
these bits. Therefore, we can treat the selection of the indexes of the n INFO bits and
the n, TEST-X bits as a random sampling (after the numbers n, n,, and n, and the
indexes of the TEST-Z bits have all already been chosen) and use Hoeffding’s theorem
and Corollary 2.2 (that are described in Section 2.6).

Applying Corollary 2.2, we get:

_ o
b K G, +€> (1 Spa,x)] <@ )

Ty

In the above discussion, we have actually proved the following Theorem:

Theorem 6.3. Let us be given 6 > 0, R > 0, and, for infinitely many values of n,
a family {v7,..., v} ., } of linearly independent vectors in Fy such that § < dm%
g, and
for any n,n.,n, > 0 and two my,-bit final keys k, kK, the distance between Eve’s states

and == < R. Then for any pa,,Pax > 0 and €see > 0 such that pa gz + €sec <
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corresponding to k and k' satisfies the following bound:

Ng

2
(AP P (16 1)) < 2R e () "ehe, (6.19)

In Subsection 6.3.7 we explain why the vectors required by this Theorem exist.

We note that the quantity <Agv‘léz’p“’”)(k, k’)) bounds the expected values of the
Shannon Distinguishability and of the mutual information between Eve and the final key,
as done in [BGMO09] and [BBBMRO6], which is sufficient for proving non-composable
security; but it also avoids composability problems: Eve is not required to measure
immediately after the protocol ends, but she is allowed to wait until she gets more
information. In Subsection 6.3.6 we use this bound for proving a fully composable

security.

6.3.5 Reliability

Security itself is not sufficient; we also need the key to be reliable (namely, to be the
same for Alice and Bob). This means that we should make sure that the number
of errors on the INFO bits is less than the maximal number of errors that can be
corrected by the error-correcting code. We demand that our error-correcting code can
correct n(pq . + €rel) errors (we explain in Subsection 6.3.7 why this demand is satisfied).
Therefore, reliability of the final key with exponentially small probability of failure is
guaranteed by the following inequality: (as said, Cy corresponds to the actual bit string

of errors on the INFO bits in the protocol, when they are encoded in the z basis)

C C — Tz Qne
Pr [<|I| > Paz + 5re1> A (|TZ| < pa7z>:| <e 2(n+nz) ?el' (6.20)
n n

z

This inequality is proved by an argument similar to the one used in Subsection 6.3.4:
the selection of the indexes of the INFO bits and the TEST-Z bits is a random partition
of n+n, bits into two subsets of sizes n and n., respectively (assuming that the indexes
of the TEST-X bits have already been chosen), and thus it corresponds to Hoeffding’s
sampling used for Corollary 2.2.

6.3.6 Proof of Fully Composable Security

We now prove that the BB84-INFO-z protocol satisfies the definition of composable
security for a QKD protocol: namely, that it satisfies Equation (2.2) presented in
Subsection 2.3.1. We prove that the expression %tr |pABE — pU ® pE| is exponentially
small in n, where papg is the actual joint state of Alice, Bob, and Eve; py is an ideal
(random, secret, and shared) key distributed to Alice and Bob; and pg is the partial
trace of papg over the system AB (see Subsection 1.3.2).

To make reading easier, we use the following notations, where i is the bit string sent
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by Alice, iP is the bit string received by Bob, and ¢ = i & i® is the string of errors:

i?? 2 (i, 15, 00), (6.21)

(1>

1 if %l < Pa,» and % < Pa,z

T (6.22)

0 otherwise

In other words, iérB consists of all TEST-Z and TEST-X bits of Alice and Bob; and T

is the random variable representing the result of the test.

According to the above definitions, the states papg and py are

page = Y. Pr(ii%P) Kalkl, ® K)p(K/|;
i,iB,P|T=1
& () @12 P. €. P el (6.23)
1
o= g D K)alkly ® k)5 (K, (6.24)
k

where (p::xB>E is defined to be Eve’s quantum state if Alice sends the INFO string
X = ig in the bases b’ = bg and Bob gets the INFO string xP = i]sg. All the other states
actually represent classical information: subsystems A and B represent the final keys
held by Alice (k = xPg) and Bob (kK/, that is obtained from xB, & = ng , and Pg), and
subsystem C represents the information published in the unjammable classical channel
during the protocol (this information is known to Alice, Bob, and Eve)—namely, iﬁ}B

(all the test bits), P (the partition), and £ = xPZ (the syndrome).

We note that in the definition of papg, we sum only over events in which the test is
passed (namely, in which the protocol is not aborted by Alice and Bob): in such cases,
an m-bit key is generated. The cases in which the protocol aborts do not exist in the
sum—namely, they are represented by the zero operator, as required by the definition of
composable security (see Subsection 2.3.1 and [Ren08, Subsection 6.1.2]). Thus, papg
is a non-normalized state, and tr(papg) is the probability that the test is passed.

To help us bound the trace distance, we define the following intermediate state:
pIABE = Z Pr (i7 iBa P) ' ’k>A<k‘A ® |k>B<k‘B
1,iB,P|T=1

© (o) ®F" P& P.€lc. (6.25)

This state is identical to papg, except that Bob holds the Alice’s final key (k) instead of
his own calculated final key (k’). In particular, the similarity between papg and pypg
means, by definition, that pg 2 trap (paBg) and P £ trap (P\pg) are the same state:

namely, pp = pf.
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Proposition 6.4. Under the same conditions as Theorem 6.3, it holds that

1 —(7”“” )27’L€2

L tr|ohps — pu @ pi| < 2R () "o (6.26)
for pABE and py defined above and for the partial trace pg 2 {rap (PABE)-

Proof. We notice that in p/ g, the only factors depending directly on x and xB (and
not only on k and &) are the probability Pr (i, iB, 73) and Eve’s state <p2/xB)E. The

probability can be reformulated as:

Pr(i,i®,P) = Pr(if%,P,¢) - Pr(k|if® P, €)

Prx\kl P.E)-P (B]xkl P, &)
B
2m 27’117'm

B\xkl ,P,E) . (6.27)

(Because all the possible n-bit values of x have the same probability, 2%; and because
all the » + m rows of the matrices Pc and Pk are linearly independent, so there are
exactly 2"~ values of x corresponding to each specific pair (&,k).)

Therefore, the state py g takes the following form:
1

PABE = om Z Pr (i7°,P,€) - [k)a(k|, @ [K)B(k[g
k,i2B P ¢|T=1

1 ,
© g 2 PP ki) (),

B xPY =¢
kPl =k
® |i'7A'BaP7£>C<i'7A'B7Pa£|C

= 2% Z Pr (175, P,€) - [k)a(k|, ® [k)p (kg

k,i2B P ¢|T=1
® (g ® i5, P, &)c(if®, P&l (6.28)

(pkx was defined in Equation (6.8).)

The partial trace pi = trap (p\pg), that (as proved above) is the same as pg, is

1 . ~ . .
p=rs=5r D>, Pr(if®P.€) (A @ i7" P &)clif?, P klo,  (6.29)
k,ifB P ¢ T=1

and the state py ® pg is

1
pU & pE = 227m Z (lT , P, 5) | > <k’A ® ‘k>B<k’B
k k' iAB P € T=1

[



® (P )g @ |32, P, €)c(i2B, P, €| ..

By using the triangle inequality for norms, since py g and py ® pg are the same (except
the difference between Eve’s states, (pk)p and (pkr)g), we get, by using the definition
of (Agje‘z’p“’z)(k, k")) (Equation (6.14)) and Theorem 6.3:

1 1 ~ ~
ha |PasE — U © p| < Jom Z Pr (i7°,P,€) - *tr |(Pk)g — (P )|
kK 4B P g|T=1

— pa zsPa, ac) "
o 22m Z Eve k )>
k,k"’

()
< 2Rmne \ntna) sec) (6.30)
as we wanted. O

We still have to bound the following difference:

/ :+ B
PABE — PABE = Z Pr (i,i%, P)
i,iB,P|T=1

[k)a(kly @ [[K)s (K5 — k) (K|g]
© (o), @157, PO, Pl
= Pr((k£K)A(T=1)

> Pr(i,i®,P| (k£K)A(T=1))

i,iB,P
k)a(kly ® [[K)BK'[g — [k)p (k]
® (PE:XB>E ® 177, P, &) cir”, P, &l (6.31)

Because the trace distance between every two normalized states is bounded by 1, and

because of the reliability proof in Subsection 6.3.5, we get:

2
Ny 2
) N€rel

%tf |pase — Phpe| <Pr((k#K) A (T=1)) < 2 (6.32)

(Because if k # k/, Alice and Bob have different final keys, and this means that the
error correction stage did not succeed. According to the discussion in Subsection 6.3.5,
this can happen only if there are too many errors in the information string—mnamely, if
% > Pa,z + €rel.)

To sum up, we get the following bound:

1 1 1
5“|PABE—PU®PE\ < Qtr’pABE_piABﬂ+§tr’p:ABE_pU®pE|

TL€2

< HR) M ogne () e (639

This bound is exponentially small in n. Thus, we have proved composable security of
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BB84-INFO-z.

6.3.7 Security, Reliability, and Error Rate Threshold

According to Theorem 6.3 and to the discussion in Subsection 6.3.5, to get both security
and reliability we only need vectors {v{,...,v} ,,, } satisfying both the conditions
of the Theorem (distance d”é% > % > Pa,x + €sec) and the reliability condition (the
ability to correct n(pq,; + €re1) errors). Such families were proven to exist in Appendix E
of [BBBMRO6], giving the following upper bound on the bit-rate:

m 1
Rsecret = E <1- H2(2pa,x + 26sec) — Hy <pa,z + €rel + n) ) (634)

where Hy(z) = —zlogy(z) — (1 — ) logy(1 — ).

Note that we use here the error thresholds p, , for security and p, . for reliability.
This is possible, because in [BBBMRO06] these conditions (security and reliability) on
the codes are discussed separately.

To get the asymptotic error rate thresholds, we require Rgecret > 0, and we get the
condition:

H(2pg,z + 2€sec) + Ho <pa,z + €rel + ;) <1 (6.35)

The secure asymptotic error rate thresholds zone is shown in Figure 6.1 (it is below
the curve), assuming that % is negligible. Note the trade-off between the error rates
Da,> and g . Also note that in the case p, . = paq, We get the same threshold as BB84
([BBBMRO6] and [BGM09]), which is 7.56%.

6.4 Conclusion

In this chapter, we have proved the BB84-INFO-z protocol to be fully secure against
collective attacks. We have discovered that the results of BB84 hold very similarly for
BB84-INFO-z, with only two exceptions:

1. The error rates must be separately checked to be below the thresholds p, . and
Pa,x for the TEST-Z and TEST-X bits, respectively, while in BB84 the error rate
threshold p, applies to all the TEST bits together.

2. The exponents of Eve’s information (security) and of the failure probability of the
error-correcting code (reliability) are different than in [BGMO09], because different
numbers of test bits are now allowed (n, and n, are arbitrary). This implies that
the exponents may decrease more slowly (or more quickly) as a function of n.
However, if we choose n, = n, = n (thus sending N = 3n qubits from Alice to

Bob), then we get exactly the same exponents as in [BGMO09].

The asymptotic error rate thresholds found in this chapter allow us to tolerate a

higher threshold for a specific basis (say, the x basis) if we demand a lower threshold
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Figure 6.1: The secure asymptotic error rates zone for BB84-INFO-z (below
the curve)

for the other basis (z). If we choose the same error rate threshold for both bases, then
the asymptotic bound is 7.56%, exactly the bound found for BB84 in [BBBMROG6]
and [BGMO9].

We conclude that even if we change the BB84 protocol to have INFO bits only in the
z basis, this does not harm its security and reliability (at least against collective attacks).
This does not even change the asymptotic error rate threshold. The only drawbacks
of this change are the need to check the error rate for the two bases separately, and
the need to either send more qubits (3n qubits in total, rather than 2n) or get a slower
exponential decrease of the exponents required for security and reliability.

We thus find that the feature of BB84, that both bases are used for information, is
not very important for security and reliability, and that BB84-INFO-z (that lacks this
feature) is almost as useful as BB84. This may have important implications on security
and reliability of other protocols that, too, use only one basis for information qubits, such
as the “three-state protocol” [Mor98] and some two-way protocols [BKM07, ZQLWL09].

We also present a better approach for the proof, that uses the quantum distance
between two states rather than the classical information. In [BGM09, BBBGMO02,
BBBMRO06], the classical mutual information between Eve’s information (after an
optimal measurement) and the final key was calculated (by using the trace distance
between two quantum states); although we should note that in [BGM09, BBBMRO06],
the trace distance was used for the proof of security of a single bit of the final key even
when all other bits are given to Eve, and only the last stages of the proof discussed

bounding the classical mutual information. In this chapter, on the other hand, we use
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the trace distance between the two quantum states until the end of the proof, which
allows us to prove fully composable security.

Therefore, our proof shows the fully composable security of BB84-INFO-z against
collective attacks (and, in particular, security even if Eve keeps her quantum states until
she gets more information when Alice and Bob use the key, rather than measuring them
at the end of the protocol); and a very similar approach can be applied to [BGM09],
immediately proving the composable security of BB84 against collective attacks. Our
proof also makes a step towards making the security proof in [BBBMRO06] (security
proof of BB84 against joint attacks) prove the composable security of BB84 against
joint attacks, a proof fully achieved in Chapter 7.

Our results show that the BB84-INFO-z protocol can securely be used for distributing
a secret key; the security is of an ideal implementation and against an adversary limited
to collective attacks (a generalization to the most general attacks (joint attacks), by
using the methods of [BBBMRO6], is proposed in Chapter 7). Moreover, security of
the final key is universally composable, which means that the key may be used for any
cryptographic purpose without harming security, even if Eve keeps her quantum states
and makes optimal use of any information she gets in the future.

The techniques described in our proof may be applied in the future for proving
security of other protocols by using similar methods, and, in particular, for proving
security of other QKD protocols that use only one basis for the information bits, such
as [Mor98, BKM07, ZQLWL09] mentioned above.
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Chapter 7

Composable Security of
Generalized BB84 Protocols

Against General (Joint) Attacks

In this chapter, we present a fully composable security proof of “generalized BB84” QKD
protocols against joint attacks (namely, against the most general theoretical attacks, as
described in Subsection 2.3.2). The protocols for which we prove security are the BB84-
INFO-z protocol (Subsection 7.3.1), the standard BB84 protocol (Subsection 7.3.2), the
“efficient BB84” protocol (Subsection 7.3.3), and the “modified efficient BB84” protocol
(Subsection 7.3.4). The proof uses BBBMR’s security approach, that is described in
Subsection 2.3.3.

This chapter is based on a paper being prepared by Michel Boyer and Rotem Liss'.

7.1 Full Definition of the Generalized BB84 Protocols

The protocols for which we prove security in this chapter belong to a generalized class
of BB84-like protocols. Below we formally define this general class of protocols. Some
of the details in this definition are decided by each specific protocol, but most of the
details are shared by all the protocols. See Section 2.7 for an explanation of the notation

of bit strings (s, b, etc.), and see Section 1.1 for an explanation of the notations

10)0; [1)0, [0)1, 1)1

1. Before the protocol begins, Alice and Bob choose some shared (and public)
parameters: the numbers N and n, the sets B and {Sp}pep and probability
distributions over them (decided by the specific protocol) that will control the
choice of the bit strings b,s € F', the testing function 7" (decided by the specific
protocol), the r x n parity check matrix Pc (corresponding to a linear error-

correcting code C), and the m x n privacy amplification matrix Pk (representing a

LThis paper is in preparation.
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linear key-generation function). It is required that all r + m rows of the matrices

Pc and Pk put together are linearly independent.

Formally, for choosing the sets B and {Sp }nep and the corresponding probability
distributions, Alice and Bob should choose the set B C Fév of basis strings, the
probabilities Pr(b) for all b € B, the sets Sy, C FY of s strings for all b € B,
and the probabilities Pr(s | b) for all b € B and s € S,. We require that |s| =n
for all s € Sp. The testing function T : Févfn X Févfn x FY — {0,1} must get
(it @ jr,br,s) as inputs and give 0 or 1 as an output. In Section 7.3 we give

examples of protocols and their formal definitions using these notations.

. Alice randomly chooses an N-bit string i € Fév , an N-bit string b € B, and an
N-bit string s € Sp, (that must satisfy [s| = n), and sends the N qubit states
[i1)by 5 |92)bgs - - - » [iN )by, ODE after the other, to Bob using the quantum channel.

Bob keeps each received qubit in a quantum memory, not measuring it yet?.

. Alice sends to Bob over the classical channel the bit string b = b;...by. Bob
measures each of the qubits he saved in the correct basis (namely, when measuring
the i-th qubit, he measures it in the z basis if b; = 0, and he measures it in the z
basis if b; = 1).

The bit string measured by Bob is denoted by j. The XOR of i and j is denoted

c £ i@ j. If there is no noise and no eavesdropping, then i = j (that is, ¢ = 0).

. Alice sends s to Bob over the classical channel. The INFO bits (that will be used
for creating the final key) are the n bits with s; = 1, while the TEST bits (that
will be used for testing) are the N — n bits with s; = 0. We denote the substrings
of i, j, c, b that correspond to the INFO bits by ir, ji, c1, and by, respectively; and
we denote the substrings of i, j, c, b that correspond to the TEST bits by i, jr,

crt, and b, respectively.

. Alice and Bob both publish the bit values they have for all the TEST bits (i
and jy, respectively), and they compute their XOR ¢ = it @ jp. They compute
T(ct,br,s): if it is 0, they abort the protocol; if it is 1, they continue the run of
the protocol.

. The values of the remaining n bits (the INFO bits, with s; =1) are kept in secret
by Alice and Bob. The bit string of Alice is iy, the bit string of Bob is ji, and
their XOR is cj.

2 Here we assume that Bob has a quantum memory and can delay his measurement. In practical
implementations, Bob usually cannot do that, but he is assumed to choose his own random basis string
b’ € B and measure in the bases it dictates. Later, Alice and Bob discard the qubits measured in the
wrong basis. In that case, we need to assume that Alice sends more than N qubits, so that N qubits
are finally detected by Bob and measured in the correct basis. In Appendix A of [BBBMROG6] it is
explained why this change of the protocol does not hurt security.
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7. Alice sends to Bob the syndrome of i; (with respect to the error-correcting code
C and to its corresponding parity check matrix Pc), that consists of r bits and is
defined as € £ iIPCT . By using &, Bob corrects the errors in his j; string (so that

it is the same as ip).

8. The final key consists of m bits and is defined as k £ iIPIrg . Both Alice and Bob

compute it.

7.2 Bound on the Security Definition for the Generalized
BB84 Protocols

7.2.1 The Hypothetical “Inverted-INFO-Basis” Protocol

For the security proof, we use an alternative, hypothetical protocol, in which Alice
sends to Bob the qubits after inverting the bases of the INFO bits (without changing
the bases of the TEST bits). We call this protocol “hypothetical” because it is never
actually used by Alice and Bob, and we do not perform any reduction to it (or from it),
but we compute probabilities of certain events in the hypothetical protocol for use in
our security bound. In particular, we use the error rate in the hypothetical protocol for
bounding the trace distance in the security definition of the real protocol.

In the hypothetical protocol, Alice, Bob, and Eve do everything exactly as they
would do in the real protocol, except that Alice and Bob use (and publish) the basis
string b? £ b @ s instead of b: namely, they use the basis string by for the TEST bits
and the basis string by (the bitwise NOT of by) for the INFO bits.

Formally, this hypothetical protocol is defined by replacing Steps 2-3 of the original
protocol (as described in Section 7.1) by the following steps:

2. Alice randomly chooses an N-bit string i € FYY, an N-bit string b € B, and an
N-bit string s € Sy, (that must satisfy |s| = n). Then, she computes the N-bit
string b” £ b @ s, and sends the N qubit states li1)e0, [i2)95 - - - » |z'N>b9V, one after
the other, to Bob using the quantum channel. Bob keeps each received qubit in a

quantum memory, not measuring it yet.

3. Alice sends to Bob over the classical channel the bit string b® = v9...5%,. Bob
measures each of the qubits he saved in the correct basis (namely, when measuring

the ¢-th qubit, he measures it in the z basis if b? = 0, and he measures it in the z
basis if b = 1).

We notice that in this protocol, Alice chooses b and s in the same way as she would
choose them in the real protocol, but uses (and sends to Bob for his use) b® and s
instead.

In the security proof, we will use the notation of Prinyerted-INFO-basis fOr calculating the

probability of a certain event assuming that Alice and Bob use the hypothetical protocol.
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In particular, we note that Prigverted INFO-basis(* | b, 8) is a conditional probability on
Alice choosing the bit strings b, s (while she actually uses the basis string b®).

It should be noted that Pripyerted-INFO-basis(- | D, 8) is usually the same as Pr(- | b?, s):
namely, the hypothetical protocol given that Alice chooses b,s (and thus uses b, s)
is the same as the real protocol given that Alice chooses b®,s. However, the second
notation is not always well-defined, because it may be the case that b € B while b® ¢ B,
or that s € Sy, while s & So; therefore, it may be the case that b is not an allowed basis
string for the real protocol. In the standard BB84 protocol (see Subsection 7.3.2), such
problems are impossible, and this is why [BBBMRO06] uses the notation of Pr(- | b", s)
instead of Pripyerted-INFO-basis(* | b, 8). However, in our chapter, we discuss generalized

BB84 protocols, and we must use the notation of Prigyerted- INFO-basis(* | b, 8).3

7.2.2 The General Joint Attack of Eve

Before the beginning of the QKD protocol (and, thus, independently of i, b, and s),
Eve chooses some joint attack to perform. In a joint attack, all the qubits are attacked
by using a shared giant probe (ancillary state) kept by Eve. Eve saves her probe in a
quantum memory and can keep it indefinitely, even after the final key is used by Alice
and Bob; and she can perform, at any time of her choice, an optimal measurement
of her giant probe, chosen based on all the information she has at the time of the
measurement (including the classical information sent during the protocol, and including
the information she acquires when Alice and Bob use the key).

Given that Alice sends to Bob the state |i), = ®§~V:1]ij>bj (namely, the N-bit string
is i and the N-bit basis string is b), Eve attaches a probe state |0)g and applies some
unitary operator U of her choice to the compound system |0)g|i)p. Then, Eve keeps
to herself (in a quantum memory) her probe state, and she sends to Bob the N-qubit
quantum state sent from Alice to Bob (which may have been modified due to her attack
U).

The most general joint attack U of Eve is
Ul)eliyn = > [Ebli)e, (7.1)
jeFy
where |E! ;)b are non-normalized states in Eve’s probe system. We note that

(E{3|E;)b = Pr(j | i,b,s). (7.2)

Writing the INFO and TEST bits of Alice and Bob separately (ir, i instead of i, and
jr,J1 instead of j), we can denote |E{ ;)b by [Ef_; 5.5)b-

In Subsection 3.4 of [BBBMRO6], the notation of |Ej )b is introduced. This

notation is useful, because it treats it and jr as constants (since they are ultimately

3 It is also possible that Pr(b,s) # Pr(b°,s), in which case the use of b%, s in the real protocol does
not happen with the same probability as the use of b® s in the hypothetical protocol.
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published by Alice and Bob, and then they are known to Eve), assuming their values to

be known. It is defined as

A 1 )
N E o .
\/Pr(jT | iT,iI,b,S)’ lT’lleTvJI>b ( )

‘Ei17j1>bys

We note that |Ej j,)bs also depends on the constants i, jr (and not only on i, ji, b,s).
According to Equations (3.22)-(3.23) of [BBBMRO6], given that Alice sends iy, it, b, s

and that Bob measures jr, the normalized state of Eve and Bob is

Vi) = D 1Big)bslin, (7.4)
Jji1€FY
and it also holds that
(B i1 Bipji)b,s = Pr(ji | i, i, jT, b, 8). (7.5)

Let us define pg’; (which also depends on ir, jr) to be the normalized state of Eve
if Alice sends iy, it, b, s and Bob measures jr,jr. That is, plﬁ’; is the normalization of
’Ei/,j>b and of ‘EiIJI>b7S7 S0

b7S é |Ei17jl>b’s<EiI’jI‘ e |E1/,j>b<Ei/7J
ir,J1 Pr(jI ’ iI;iT7jT7b7S> Pr(j ’ i,b,S)'

(7.6)

The state of Eve after her attack (tracing out Bob) is

piI = tl“Bob(|7,Z)i1><¢i1|) = Z |Ei17j1>b,S<EiI7j1| = Z Pr(jr | ibiTajTava)pil;:_?Iv (7.7)

j1eFy jieFy
and we define its purification |¢;,) (so that p'l is a partial trace of |p;,)) as

oi) 2 D |y g bslin @ n). (7.8)
jIEF'g

7.2.3 The Symmetrized Attack of Eve

In [BBBMRO6], the most general joint attack is not directly analyzed: for simplicity, it
is assumed that Eve applies a process called symmetrization, resulting in a symmetrized
attack. The process of symmetrization is always beneficial for Eve (it does not change the
error rate, and we prove in Proposition 7.4 that it does not decrease Eve’s information),
so a security proof against all symmetrized attacks implies a security proof against all
the possible joint attacks.

In Eve’s original attack, she has her own probe subsystem E. In the symmetriza-
tion process, Eve adds another probe subsystem M, in the initial state of [0;)y =
ﬁ Zmng" |lm)y;. Given the original attack U (applied to Alice’s qubits and to the
probe E), the symmetrized attack U*Y™ (applied to Alice’s qubits and to both probes E
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and M) is defined by
U A (Iy @ SHU @ Iv)(Is © 9), (7.9)

where S is a unitary operation applied to Alice’s qubits and to the probe M, and it

operates as follows:
Sli)pm)n = (—1)0P)™ i & m)p[m) . (7.10)

Intuitively, Eve first XORs Alice’s bit values with a random string m (kept by her); then
she applies her original attack; and then she reverses the XOR with m. Full definition
and explanations are available in Subsection 3.1 of [BBBMRO6].

In this chapter, we use several properties of the symmetrized attack. First of all, the
“Basic Lemma of Symmetrization” (Lemma 3.1 of [BBBMRO6]) gives the expression for
|E5Y™ )b (of the symmetrized attack) as a function of |Ef;)p (of the original attack):

B =

Z (—1)(@j)'m‘Ei/@m,j@m>b‘m>M~ (7.11)
The second property we use, proved in Corollary 3.3 of [BBBMRO6], is the fact that
the probabilities of the error strings ¢y and ¢t (if not conditioning on i) are not affected

by the symmetrization. Namely,
PrSym(cth ‘ b,S) = PI‘(CI, CT ’ b7 S)- (712)

This is true for all the basis strings b; in particular, this is true for the basis string b? £
b@&s used in the hypothetical “inverted-INFO-basis” protocol defined in Subsection 7.2.1,

SO

Prisri,\izrted-INFO-basis (CL CT ‘ b, S) = Prinverted—INFO—basis(Cly CT ‘ b, S) . (713)

The third property we use, proved in Lemma 3.8 of [BBBMROG6], is the fact that
the probabilities for errors in the TEST bits are not affected by the bases used for the
INFO bits:

Pr¥"(jr | i1, b,s) = Pr*"(jr | i, b, s). (7.14)

In particular, since the only difference between the hypothetical “inverted-INFO-basis”
protocol and the real protocol is the basis string used for the INFO bits (b; and by,
respectively), this means that the probabilities of errors in the TEST bits are the same
for both of these protocols:

Prisl};\irted—INFO—basis(jT | iT’ b? S) = Prsym(jT ‘ iT? b’ S)' (715)

The fourth property we use, proved in Corollary 3.6 of [BBBMRO06], is the fact
that the probability of any string of INFO bits i is uniform (that is, 2%) even when
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conditioning on the four parameters ir, jr, b, s, that are ultimately known to Eve (we

note that jr is affected by Eve’s attack). Namely,

1
Prsym<i1 ‘ iT,jT,b,S) = 27 (716)

7.2.4 Results from [BBBMRO6]

The security proof of the generalized BB84 protocols is very similar to the security
proof of BB84 itself, that was detailed in [BBBMRO6]. Most parts of the proof are not
affected at all by the changes made to BB84 to get the generalized BB84 protocols
(changes detailed in Section 7.1 of this chapter), because these parts assume fixed strings
s and b.

Therefore, the reader is referred to the proof in Section 3 (except Subsection 3.3.2)
and Subsections 4.1-4.4 of [BBBMRO6], that applies to all the generalizations of BB84
without any changes (except changing the total number of bits, 2n, to N, which does

not affect the proof at all), and that will not be repeated here.

We denote the rows of the error-correction parity check matrix Pc as the vectors

v1,...,v, in F3, and the rows of the privacy amplification matrix Px as the vectors
Vpily- -, Uprim. We also denote, for any 1 <7/ < r +m,
VS & Span{vi, . .., V1, U/ g1 - - Vptm }r (7.17)

namely, V5 is the (r + m — 1)-dimensional vector space that spans all the error

correction and privacy amplification vectors, except v,~; and we also define

~ A .
= d 1, V7). 7.18
02 mindu(ue, V) (7.18)

For a 1-bit final key k € {0,1} (that is, for m = 1), and given a symmetrized attack

~Sym

of Eve, we define p;” to be the state of Eve corresponding to the final key k, given
that she knows £. Thus,

1 .
e S DR (o (7.19)
; ‘ iPY =¢
! it v =k

where (p')¥™ as defined in Equation (7.7), is Eve’s state after the (symmetrized)
attack, given that Alice sent the INFO bit string ij (and given the bit strings i, jr, b, s,
that are ultimately known to Eve).

In addition, we define the state p;>™, that is a lift-up of p;"™ (which means that

py" is a partial trace of p"™), by assuming that Eve knows the purification |<,0f1ym>
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defined in Equation (7.8):

1
ﬁiym = on—r—1 Z |Sosym><90iym|- (7.20)
. { iPE =¢
Tl o =k
(This state was defined in Equation (4.10) of [BBBMRO6], but was denoted there as
Pk (UT‘-‘rla S))
In the end of Subsection 4.4 of [BBBMRO6] (in its Proposition 4.6, and according to
the proof of Lemma 4.5, which appears in Appendix D.2 of [BBBMRO06]), it was found

that (in the case of a 1-bit final key, i.e., m = 1), for any symmetrized attack,

1 v,
,tr|~sym Asym| < 2\/Prlsz\r,relrted INFO-basis ‘CI’ > 5 | ir,jr,b,s|, (7.21)

where C is the random variable whose value equals to ¢p £ ir@®j, and Pr{Yn oo o
means that the probability is taken over the hypothetical “inverted-INFO-basis” protocol
defined in Subsection 7.2.1 (to which Eve applies the same symmetrized attack that
she applies to the real protocol). We also note that © was defined above, and that in
the current case (m = 1), its definition is simplified to © = du (v, 41, V,5$) (and VX is
simply Span{vy,...,v,}).

/\Sym

Now, according to [NC00, Theorem 9.2 and page 407], and using the fact that p

is a partial trace of p;”™, we find out that
1
ftr\“ym—“yﬂ < —tr|p P (7.22)

From this result and from Equation (7.21) we deduce that

1 oo,
*tr”\bym Aaym| < 2\/Prf1}1,\1;;rted INFO-basis ‘CI’ > 5 ‘ ir,jT,b,s|. (7.23)

7.2.5 Bounding the Differences Between Eve’s States

So far, we have discussed a 1-bit key. We will now discuss a general m-bit key k. We

define p;>™ to be the state of Eve corresponding to the final key k, given that she knows

&
1

ﬁi}’m = on—r—m Z (pil)sym' (724)
. ‘iIPT =£
i pT =k
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We note (for use in Subsection 7.2.6) that if we substitute (p')»™ from Equation (7.7),

we get

1 < s s s b,s \ ™
=g 2L PGl ininjrbos) - (hh3) (7.25)
.. |iPE =¢
117‘]I‘i1pg:k

Proposition 7.1. For any two keys k,K' of m bits, and for any symmetrized attack,

1 v,
Ll - < 2m\/ Preaeons IO 2 § indnbs]. (120)

where Cy is the random variable whose value equals to ¢y £ i1 @ ji, and, in addition,

b= minr+1§r’§r+m dy (Ur’a TE;XC)
Proof. We define the key k;, for 0 < j < m, to consist of the first j bits of k' and the
last m — j bits of k. This means that kg = k, k,,, = k/, and k;_; differs from k; at
most on a single bit (the j-th bit).

First, we find a bound on %tr ] ﬁi}:: _ ﬁi};m| since k;_1 differs from k; at most on
a single bit (the j-th bit, given by the formula ij - v,4;), we can use the same proof that
gave us Equation (7.23), attaching the other (identical) key bits to & of the original

proof; and we find out that

1 ..
5“ |/A’i§;r: - ﬁzm‘ < 2\/Prisr}:\?;rted—INFO—basis Ci| > EJ | i, jr, b,s |, (7.27)

exc

where we define 9; to be dn(vi;, V75

), and, therefore, 0 = minj<;r<,, v;.

In particular, © < 0;. Therefore, if |Cy| > %, then |Cy| > g Therefore, Equa-
tion (7.27) implies
1 ~Sym ~Sym Sym r[) . .
§tr ’pkyj,l - pkyj | < 24/ Priiierted-INFO-basis ||C1l = ) | T, jr, bS] (7.28)
Now we use the triangle inequality for norms to find
ltr |Asym o Asym| o ltl‘ |Asym B Asym| < in: 1 tr |Asym B Asym|
o 1Pk P 1= 5 WPy~ Prp | S o TPk, 1 — Px;
j=1
v L.
= Qm\/Prisr}l,\I/zrted—INFO—basis {CI’ = 5 | i, jT,b,s]. (7.29)

We would now like to bound the expected value (namely, the average value) of the
trace distance between two states of Eve corresponding to two final keys. However, we
should take into account that if the test fails, no final key is generated, in which case
we define the distance to be 0. We thus define the random variable AE" (k, k') for any
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two final keys k, k’:

%tr ’[A)iym — Z)\i}jm| if T(iT @jT,bT,S) =1

Afve (kK | ir,j1,b,s,§) 2 _ (7.30)
0 otherwise
We need to bound the expected value (AE" (k,k’)), that is given by:
<Ai]y\:2(k’ k,)> = Z Ai]y\gl(k’ k, ’ iT7jT)b7S)£) : Prsym(iTuijbasvs)'
iT:jT S Fé\rin»
b€ B,s € Sp, & € F}
(7.31)

(In Subsection 7.2.6 we prove that this expected value is indeed the quantity we need to

bound for proving fully composable security, defined in Subsection 2.3.1.)

Theorem 7.2. For any two final keys k, K/,

~2n

C N
<A5Ey\f2(k7 k/)> < 27n\/Prinverted—INF‘O—bausis |:(|nl| > ! ) A\ (T = 1):| y (732)

|C1]
where —

1s a random variable whose value is the error rate on the INFO bits, and
T is a random variable whose value is 1 if the test passes and 0 otherwise. We note
that the protocol considered for the probability in the right-hand-side is the hypothetical
“inverted-INFO-basis” protocol defined in Subsection 7.2.1, in which Alice and Bob use the
basis string b® £ b @ s instead of b. We note that the probability in the right-hand-side

is the probability for the original (non-symmetrized) attack.

Proof. We use the convexity of 2, namely, the fact that for all {p;}; satisfying p; > 0
and 3, p; = 1, it holds that (32, piz;)® < 32, pie?. We also use the fact that

P ted INFO-basis (1T, T, b, 8)
= Py rted INFO-basis 15 Py 8) - PIy 4 iNFO-bagis GT | i1, b, 8)
= Pr¥"(ip,b,s) - Pr™¥"(jr | i, b, s)
= Pr"(ir,jr, b, s), (7.33)

which is correct because i, b, s are all chosen in the same way both in the hypothetical
“inverted-INFO-basis” protocol and in the real protocol (even though different basis
strings are used in these protocols), and because according to the third property of

the symmetrized attack (Equation (7.15)), Pri™ @ NFO-basis UT | i1, b,s) = Pr¥y™(jr |
iT, b, S).
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In addition, we use the result

N | S

>/\(T:1)|b,s]

sym
Prinverted—INFO—basis [(‘CI’ >

> AT =1) | b,s] , (7.34)D

N | S

= Plinverted-INFO-basis [<\Cll >

which is correct because according to the second property of the symmetrized attack

(Equation (713)), PriSZxI;I;rted-INFO—basis(CI’CT ‘ b,S) = Prinverted—INFO—basis(ClaCT ‘ b,S),
and because the random variable T depends only on the random variable Ct and on

the parameters b, s.
We also use the result
P cd INFO-basis (05 5) = Plinverted- INFO-basis (b, S), (7.35)
which is correct because Alice’s random choice of b, s is independent of Eve’s attack.

We find out that:

(AR (k K)?

2
= Y AKX |irjr,b,s,€)  Pr¥™(ir, jr, b, s, €) (by (7.31))
ir.jr,b,s,€
< Y (AYR(K |ir,jr,b,s,€))? - Pry®(ir, jr, b b ity of 2
>~ Eve ) T,JT, 0,8, r 1T,J7T, 7575) ( y convexity or x )
ir.jr,b,s,€
2 my/s s
= Z (% tr |ﬁiym - ﬁi}’,mD - Pr¥ (1T7JTa b7 S, 5) (by (730))
it.jr,b,s,§|T=1
< 4m?. DI L[ci > ¢ i, jr, b,s]
— inverted-INFO-basis =3 T,JT, D,
it.jr,b,s,§|T=1
Pr¥®(ir, jr, b, 5,£) (by (7.26))
= 4m? - Z P e ted INFObasis UCI’ z % | ir,jr, b, S]
iT,jT,b,S‘Til

Prsym(iT,jT, b, S)

=4m’* Z P e NFO-basis L(IC1l = 5) A (T =1) | ir,jr,b,s]
it,jr,b,s
Prsym(iTajTu ba S)
2
=dm” - Z Prisrbllgérted—INFO—basis [(|CI‘ >
iT,jr,b,s

Prisr}l/\rfzrted—INFO—basis(iT’jT7 b, S) (by (733))
=4m’* ZPriSr}l]\Izrelrted—INFO—basis [(IC1] 2 5) A(T =1) | b,s]
b,s

) A(T =1) |ir,jr,b,s]

NS>

sym
Prinverted-INFO-basis (b’ S)
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= 4m? - ZPrinverted-INFO-basiS [(IC1] = ) A (T =1)|b,s]

b,s
Prinverted-INFO-basis(b; S) (by (734)*(735))
= 4m2 : Prinverted—INFO-basis [(’CI’ > %) A (T = 1)] (736)

7.2.6 Bound for Fully Composable Security

We now prove a crucial part of the claim that generalized BB84 protocols satisfy
the definition of composable security for a QKD protocol: namely, that they satisfy
Equation (2.2) presented in Subsection 2.3.1. We derive an upper bound for the
expression %tr |pABE — pU ® pE|, where papg is the actual joint state of Alice, Bob,
and Eve at the end of the protocol; py is an ideal (random, secret, and shared) key
distributed to Alice and Bob; and pg is the partial trace of papg over the system AB
(see Subsection 1.3.2). In other words, we upper-bound the trace distance between
the system after the real QKD protocol and the system after an ideal key distribution
protocol (which first performs the real QKD protocol and then magically distributes to

Alice and Bob a random, secret, and shared key).

The states papg and py are

page = Y Pr(ij,b,s)-[kakl® k)K"
ij,b,s|T=1
b,s e . . .
&® <pil7jI)E® ‘lTv.]TybvSa€>C<IT7JT7b7S7€‘7 (737>
1
o= g D Kalkl@ ks(k|, (7.38)
k

where (p};jl)E is defined in Equation (7.6) to be Eve’s quantum normalized state if
Alice sends the bit strings i, iT, b,s and Bob measures the bit strings ji, jr. All the
other states actually represent classical information: subsystems A and B represent the
final keys held by Alice (k £ i;P¢) and Bob (his key kP is obtained from ji, £ £ 1P},
and Px), and subsystem C represents the information published in the unjammable
classical channel during the protocol (this information is known to Alice, Bob, and
Eve)—namely, it, jr (all the TEST bits), b (the basis string), s (the string representing
the partition into INFO and TEST bits), and &€ £ iiP} (the syndrome).

We note that in the definition of pApg, we sum only over the events in which the test
is passed (namely, in which the protocol is not aborted by Alice and Bob): in such cases,
an m-bit key is generated. The cases in which the protocol aborts do not exist in the
sum—namely, they are represented by the zero operator, as required by the definition
of composable security (see [Ren08, Subsection 6.1.2]). Thus, papg is a non-normalized

state, and tr(papg) is the probability that the test is passed.
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To help us bound the trace distance, we define the following intermediate state:

OABE = Z Pr (i,j,b,S) : |k>A<k| ® |k>B<k|
i,j,b,s|T=1
& (P}:’SI)E(@ |iT7jTabvsa€>C<iT7jTab757£|' (739)

This state is identical to papg, except that Bob holds Alice’s final key (k) instead of
his own calculated final key (kB). In particular, the similarity between papg and oaBg
means, by definition, that pg = trap (pape) and og = trap (caBg) are the same state:

that is, pg = og.

Proposition 7.3. For any symmetrized attack, it holds that

1
L |~ py©oR™

C 0
< 2m\/Prinverted—INFO—basis |:<| I| > ! ) A (T = 1):| ) (740)
n 2n

for o5 and py defined above (but for the symmetrized attack) and for the partial
sym

trace op 2 trap (aiygg). We note that the probability in the right-hand-side is the

probability for the original (non-symmetrized) attack.

Proof. We notice that in UZY]?E, the only factors depending directly on i and j; (and not
sym
only on k and &) are the probability Pr*¥™ (i, j, b,s) and Eve’s state ( bs ) . The

Pirjr
AR
probability can be reformulated as

Pr¥™(i,j,b,s) = Pr™™(ip,jr,b,s, &) Pr™¥™" (k| ip,j1,b,s, &)

(

Prey® (iI ‘ k’ iT?jTabvsaE) e (jI | iIaka iT?jTabvsaE)
1 1

= Pr® (iT,jT,b,S,E) o

Zm 2n—r—m

prm (jI | iIa iT’jTa b, S) . (741)

(This is correct because all the possible n-bit values of iy have the same probability, 2%,
conditioned on i, jr, b, s, according to the fourth property of the symmetrized attack
(Equation (7.16)); and because all the r+m rows of the matrices Pc and Pk are linearly

independent, so there are exactly 2"~ "™

(£ k).)

Therefore, the state o'y, takes the following form:

values of i; corresponding to each specific pair

sym 1 ..
oRep = w2 P (inirb.s &) K)akl® ks(k
k7iT7jT7baS7£‘T:1
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1 moe e e s bs Y™
@ n—r—m Z Pr (JI | 1171T7.]T7bas) ’ <pi1§I)E
i }iIPE =£
1,J1 IIPE —k
& ‘iTajT7b7S7£>C<iT7jT7b757£|
1 . .
= o Y P (injnbs ) kalk © Kp(k
k7iT7jT7bas7€‘T:1
® (ﬁiym)E® |iT>jT7b>S7€>C<iT7jT7bvsa£|- (742)

(This expression for p;>"™" was found in Equation (7.25).)

The partial trace aEym 2 trap (JSAyéI,IE) is

sym 1 .. sym .. ..

o = o Z Pr¥™ (ip, jo,b,s,€)- (op ") g @ liv, 1, b, 8, €)c(ir, jr, b, 8, €],
k,it,jT,b,s,§|T=1

(7.43)
and the state py @ of " is

m 1 ..
PU & U]S-Ey = 92m Z Prsym (1T7.]T7 b7 S, 5) ' ’k>A<k‘ 029 ‘k>B<k’
k»klziTajT9b7s7£‘T:1
® (ﬁi}:m)E ® |iTajTabasa£>c<iT7jT,bas,€" (744)

Since o\ g and py ® op " are the same (except the difference between Eve’s states,
(™) and (pp™)g), we get, by using the triangle inequality for norms, the definition
of (AR (k,k’)) (Equation (7.31)), and Theorem 7.2:

1
Lir o - pu 9 o2
1 .. 1 vm vm
S 227m Z Prsym (1T7JT7b7S7£) ' 51}1“(;)\;}/ )E_ (b\;}: )E|
kyk/7iT7jT7b’s7£‘T:1
1 m
= g AT OK))
Kk’
C 0
S 2rm\/Prinverted—INFO—basis |:<’| 2 > A (T == 1):| . (745)
n 2n .
Proposition 7.4. For any attack, it holds that
1 1 vm vm
itr‘UABE_PU(X)UE’ < §tr‘UX/BE_PU®UEy , (7.46)

for oABE, Uiy];nE, and py defined above and for the partial traces og £ trap (oaBE) and

o™ £ trap (o30).

sym
Proof. First, we have to find an expression for (pE’?)E . According to Equation (7.6),
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1B b (E™

b.s \Sym ) , E
(plI’JI>E Pr¥%(j [i,b,s) (747)

and according to the “Basic Lemma of Symmetrization” (see Equation (7.11)),

1

B = e 20 (D Bl oo )t (7.48)
mGFéV
Therefore,
b \m 1 (—1) (i) (m@m) [|Ei’@m,j@m>b<Ei’@m,7j@m,| ® |m>M<m/|}E
(pil’jI>E TN 2 Pr¥™(j | i,b,s)
m,m’EFé\’
(7.49)
The state oy now takes the following form:
1 . .
oRpe = v 2. PrY(Lib.s) [kalkl @ |ks(K
i,j,b,s,;mm’|T=1
® (DI memD [|Ei’@m,j@m>b<E{@m/,j@m/| ® |m>M<m/|}E
Pr¥™(j 1, b, s)
& ‘iT,jT,b7S,€>C<iT,jT,b,S,£|
1 .
= o 2 P(ibis)-[kadkl @ ks
ij,b,s,mm’|T=1
@ (1)) [ B sem) b Plem jom| © M) (m'[]
& ‘iTajT7b757€>C<iT7jTabvsa£|' (750)

We define a unitary operator V: given the state jm)y (held by Eve), the unitary
operator V takes a XOR of all the states in the subsystems A, B, and C with the
relevant parts of m. Namely, if we define m; and mt as the INFO bits and the TEST
bits (respectively) of m (of course, they depend on s), and if we define ky, = myPg
and &, = myPg, then

Vv |k>A|k>B [|E>|m>M]E |iT,jT,b,S,£>C
= |k @ km)alk & km)p [|E)m)mg
lir ® mr,jr ®mr,b,s,£ ). (7.51)

Therefore (also using the fact that Pr®¥™ (i, b,s) = Pr(i,b,s) = Pr(i® m, b, s)),

Sym 1 .
Vol Vi = oN > Pr(i®m,b,s)  [k®km)ak® k| @ |k & km)p(k ® Ky
i,j,b,s,m m’|T=1
© (DI mem [ em)b (Blom jom | © [m)w(m’[]

® ’iT@mTajT®mTabvsa€@£m>C<iT@m{I‘?jT@m&‘abasaé@ém’L (752)
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Tracing out the subsystem M (which is a part of Eve’s probe), we get

sym 1 .
trM[VaAyBqu = ov > Pri®mb,s): |k kn)a(k® k| ke kn)p(ke kal

i,j,b,s,m|T=1

&

[’E{®m,j@m>b<Ei/€Bm,j@m|]E
X ’iT ©® mT7jT ® mr, b7 S, 5 > £m>c<iT S mTajT @ mr, b7 S, € ® 5m‘(753)

Now we can change the indexes of the sum, in the following way: we denote i’ £ i ® m
and j 2 j ® m (for a fixed m), and we immediately get, according to the definitions,
the results it = ir @ mr, j5 =jr®mr, K £ P = (i ® m)) P = k@ km, and
similarly &' £ i{P} = £ ® £,,,. We also notice that T gets (it & jr, br,s) as inputs, and
that they all stay the same (because i @ j = (it ® m7) ® (jT & mr) =it @ jr), and

therefore the change of indexes does not impact the condition T = 1. Therefore,

1
t [VoRiV| = ov D Pr(iibys) - K)ak| @ K)n(k|
i',j’,b,s,m|T=1
® [|Ei/’,j’>b<Eil’,j’HE
® |i/T7j’/I‘7b7 S? £/>C<i/T‘7j’/I‘7b7 S7 £I|‘ (7'54)
E! Vp(E!.
Using the relation (pE’?I)E = % from Equation (7.6), we get
t 174 sym y -t _ o/ / / / /
| VolpeVT) = >0 Pr(ilibis) - K)a(k| @ K)s (K]
i",jb,s| T=1

o | o b,s
® PI‘(_] ’ 1 ,b,S) <p1{7Ji)E
® |i’/T7j£I‘7b7Sa£/>C<i’/I‘7j’,Tab7svél|
= Y Pr(iibs) [K)ak|®[K)p(K]
i’,j’,b,s|T=1

© (oh3), © b, €)c i, i b5, €

111

= OABE- (7.55)

To sum up, we get the result oapg = try [VoigpV '] A very similar proof gives

us the result py ® o = trum [V (pU ® U]saym) VT]. Since the trace distance is preserved

under unitary operators and does not increase under partial trace, we get

1 1
itr’JABE_pU®UE| = 5'51" trv [V (JXIBI)I}E—pU@UEym) VT”

IA

lt
—tr
2

V (o3 — pu@ o™ V1|

sym

1
= 3 tr|oVgE — pu®@op ™. (7.56)
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Proposition 7.5. For any attack,

%tr ’pABE — UABE‘ S Pr [(k 7é kB) A (T = 1)] y (757)

for par and oapg defined above, and for k being the final key computed by Alice and
kB being the final key computed by Bob.

Proof.

paBe —oae = Y. Pr(ijb,s)
i,j,b,s|T=1

k) a (k| @ [|&”)5 ("] - [k)p (k][]
® (Pﬁi)E ® lir,jr,b,s, &)cir, jr, b, s, €|
= Pr(k#Kk°) A (T =1)]

> Prlij,bs|(k#k%) A (T =1)

i,j,b,s
[lo)a (k| © [1K®)5 (k"] — [k)p (k]|
© (oh3), ®livirb.s,clinir.bis.gl.  (758)
O
The trace distance between any two normalized states is bounded by 1. Therefore,
1
5 tr |pase — oasg| < Pr [(k # kB) A(T =1)]. (7.59)
Corollary 7.6. For any attack,
1
St |PABE — pU ® pE|
< Pr[(k#Kk°) A (T =1)]
+  2my [ Prinverted-INFO-basis |:<|C73171| > %) A (T = 1)], (760)
for paBe and pu defined above and for the partial trace pg 2 trap (PABE)-
Proof. Using Propositions 7.3, 7.4, and 7.5, and also the fact that pgp = o, we get:
1
5t lpaBE —pu @ PE|
1
< gt |PABE — OABE| + 5t loABE — pU ® 0|
1 1
< 3 tr |pABE — OABE| + B tr }Uiyérvlg —pu@opg™
< Pr(k#Kk°) A (T =1)]
C ~
+ 2m Prinverted—INFO—basis [(% > ﬁ) A (T = 1)] . (761)
O
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We have thus found an upper bound for the expression %tr |pABE — pU ® pE|. In
Section 7.3 we prove this upper bound to be exponentially small in n for specific

protocols.

7.3 Full Security Proofs for Specific Protocols

Below we prove full security for specific important examples of generalized BB84
protocols.
In this section we use Hoeffding’s theorem, as described in Section 2.6; in particular,

we use Corollary 2.2.

7.3.1 The BB84-INFO-z Protocol

In the BB84-INFO-z protocol, all the INFO bits are sent by Alice in the z basis, while
the TEST bits are sent in both the z and the x bases. This means that b and s together

define a random partition of the set of indexes {1,2,..., N} into three disjoint sets:
e I (INFO bits, where s; =1 and b; = 0) of size n;
e Ty (TEST-Z bits, where s; = 0 and b; = 0) of size n,; and
e Tx (TEST-X bits, where s; = 0 and b; = 1) of size n,.

Formally, Alice and Bob agree on parameters n,n,,n, (such that N =n+n, +ny),
and we choose B = {b € FY | |b| =n,} and Sp = {s € FY | (|s| =n) A (s@® b| =
n+ ng)} (namely, s € Sy if it consists of n 1-bits that do not overlap with the n,
1-bits of b) for all b € B. The probability distributions Pr(b) and Pr(s | b) are all
uniform—mnamely, Pr(b, s) is identical for all b € B and s € Sy,.

Alice and Bob also agree on error rate thresholds, p, . and p, . (for the TEST-Z
and TEST-X bits, respectively). The testing function 7" is defined as follows:

T(IT @jTbe»S) =1 <% (|iTZ EBsz| < ny 'pa,z) A (‘iTX EBjTX| < Ny 'pa,x) . (762)

Namely, the test passes if and only if the error rate on the TEST-Z bits is at most p, .
and the error rate on the TEST-X bits is at most pg 4.

Following Corollary 7.6, we know the following bound:

1
3 tr |PABE — pU @ pE|
Pr[(k #k°) A (T =1)]

IN

+ 2Wl\/Prinverted—INFO—basis [(% > %) A (T = 1)} (763)

Below we prove the two probabilities in the right-hand-side to be exponentially small in

n:
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Theorem 7.7. Let us be given dsoc > 0, and, for infinitely many values of n, a family

{ut, ... 02 L} oof linearly independent vectors in Fy such that dgec < % Then for

any Pa,z, Pae > 0 and €sec > 0 such that pg gz + €sec < 552“, and for any n,,ng > 0, it
holds for the BB84-INFO-z protocol that

|Ci ng

~ 2
(% _92 2
Prinverted-INFO-basis |:<7’L > 2n> A (T = 1):| <e (n+nz> nESCC- (764)

Proof. Because % > % > Pa,z + €sec, it holds that

[/1Cy 0
PTinverted-INFO-basis (|| > > A (T = 1):|

i\ n 2n
[ /1Cq ) Cr Cr

= Prinverted-INFO-basis <|| > > A (’Z| < pa72> A <| X| < Pag
L\ n 2n n, Ng
[ CI CT

S Prinverted-INFO-baSis <|TL| > Pa,x + 6sec> VAN <‘nX’ S pa,m>] . (765)
L x

O]

In the hypothetical “inverted-INFO-basis” protocol, the INFO and TEST-X bits
are sent and measured in the = basis, while the TEST-Z bits are sent and measured in
the z basis. Therefore, the random and uniform sampling of the n INFO bits out of
the n + n, bits sent in the x basis (assuming that the TEST-Z bits have already been
chosen) does not affect the bases in the hypothetical protocol. This means that we can

apply Corollary 2.2 to this sampling, and we get

Ci Cr —2( =z : 2.
Prinverted-INFO-basis |:<’TL| > Pa,x + 6sec> A <‘X’ S pa,z):| S e (”Jr’ﬂz) ne .

’ (7.66)

Theorem 7.8. Let us be given dyo > 0, and, for infinitely many values of n, a family
{vt, .. v 1, }oof linearly independent vectors in Fy such that the parity-check matriz
Pg, whose rows are {v{,..., v }, defines an error-correcting code that can correct up
to n - el errors on an n-bit string. Then for any paz,Ppaqc > 0 and € > 0 such that
Da,z + €rel < Orel, and for any ny,ng, > 0, it holds for the BB84-INFO-z protocol that

Pr(k #KkB) A (T =1)] < o2(785) (7.67)

Proof. If k # kB, Alice and Bob have different final keys, and this means that the error
correction stage did not succeed. The error-correcting code can correct up to 7 - e
errors, and, therefore, it can correct up to n - (pa, + €rel) €rrors (since pg ;. + €rel < Orel)-
Therefore, a failure of the error correction stage must mean that there are more than
1+ (Pa,z+€re1) errors in the INFO bits: namely, if k # kB, then necessarily [C > Pa,z+€rel-

n
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Therefore,

Pri(k#k°)A(T=1)] = Pr [(k #kP) A (‘(ZT” < pa,z> A <’CTX‘ < pmﬂ

z nZL'
C C
Pr [<‘I’ > Pas + erel> A ('TZ| < pa,z)] . (7.68)
n T, .

In the real protocol, the INFO and TEST-Z bits are sent and measured in the z
basis, while the TEST-X bits are sent and measured in the z basis. Therefore, the
random and uniform sampling of the n INFO bits out of the n 4+ n, bits sent in the z
basis (assuming that the TEST-X bits have already been chosen) does not affect the

bases in the real protocol. This means that we can apply Corollary 2.2 to this sampling,

IN

and we get

C C _ Nz 2 2
Pr |:<| 1l > Pa,z + 6rel) A <‘ TZ| < pa,z>:| <e 2(”+"Z) Mrel (7.69)
n

Ny

If we combine the conditions and the results of Corollary 7.6, Theorem 7.7, and

Theorem 7.8, we get the following result:

Corollary 7.9. Let us be given dgec > 0, dpe1 > 0, and, for infinitely many values of

n, a family {vf,..., v 1.} of linearly independent vectors in ¥y such that dsec <

}, defines an

error-correcting code that can correct up to n - d.e1 errors on an n-bit string. Then for

and such that the parity-check matriz Pc, whose rows are {vf,...,v}

any Pa,z» Pax > 0 and €sec, €rel > 0 such that pq z + €sec < ‘5% and pq.z + €rel < Orel, and
for any n,,n, > 0, it holds for the BB84-INFO-z protocol that

]. _ _nz 2 62 _ ny 2 62
o tr |pABE — pu @ pE| < e (7)o + 2mpe () %, (7.70)

This bound is exponentially small in n.

All that is left to be explained is why the vectors required by Corollary 7.9 exist.
We need a family of vectors {v{,...,v} ., } satisfying both the condition % > 5% >
Pa,x + €sec and the ability to correct up to n(pq, . + €re1) errors. Such families were proven
to exist in Appendix E of [BBBMRO6], giving the following upper bound on the bit-rate:

m 1
Rgecret = 771 <1- H2(2pa,x + 2€sec) — Hy <pa,z + €ral + n) s (771)

where Hy(z) = —xlogy(z) — (1 — ) logy(1 — ).

Note that we use here the error thresholds p, ;, for the condition on ¢ and p, . for
error correction. This is possible, because in [BBBMRO6] these conditions on the codes

are discussed separately.
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Figure 7.1: The secure asymptotic error rates zone for BB84-INFO-z (below
the curve)

To get the asymptotic error rate thresholds, we require Rgecrot > 0, and we get the

condition .
H2(2pa,x + 26860) + H2 <pa,z + €rel + ’I’L> < 1. (772)

The secure asymptotic error rate thresholds zone is shown in Figure 7.1 (it is below
the curve), assuming that % is negligible. Note the trade-off between the error rate
thresholds p, . and p, . Also note that in the case of p,. = pqz, We get the same
threshold as in similar security proofs of BB84 [BBBMR06, BGMO09], which is 7.56%.

7.3.2 The Standard BB84 Protocol

In the standard BB84 protocol, the strings b and s are chosen randomly (except that
we demand |s| = n) and independently, and N = 2n. In other words, there are n INFO
bits and n TEST bits (chosen randomly), and for each one of them, the basis (z or x)
is chosen randomly and independently.

Formally, in BB84, we choose N = 2n, B = FY and S, = {s € FY | |s| = n}
for all b € B. The probability distributions Pr(b) and Pr(s | b) = Pr(s) are all
uniform—namely, Pr(b,s) is identical for all b € B and s € Sy,.

Given the parameter p, agreed by Alice and Bob, the testing function T is

T(IT @jT,bT,S) =1 < |iT @jT| <n-pg. (773)
Namely, the test passes if and only if the error rate on the TEST bits is at most p,.
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Proposition 7.10. In the standard BB84 protocol,

C A~ ~
PTinverted-INFO-basis |:<|nl| > v) A (T = 1):| =Pr |:<’I’ > U) A (T = 1):| .

2n n 2n
(7.74)
Proof.
G| _ 0
Pinvere— -basis — 2 — AN(T=1
Tinverted-INFO-b [(n o™ ( )
|Ci| _ @
ZPrlnverted—INFO—bams |:< n = on A(T =1)|b,s|-Pr(b,s)
b,s
= ZP K'C” 2”) A(T =1) |b0,s] - Pr(b?,s)
|C1] 0
= Pri|—2=2-|A(T=1 7.75
g [( n - 2n ( ) ( )
where b £ b @ s). O
(

The security of the standard BB84 protocol is now easily obtained:

Theorem 7.11. Let us be given dsec > 0, dre1 > 0, and, for infinitely many values of
n, a family {v7,..., v ..} of linearly independent vectors in Fy such that dsec < 0
"}, defines an

error-correcting code that can correct up to n - dye errors on an n-bit string. Then for

and such that the parity-check matriz Pc, whose rows are {v},...

Y T‘n

any pg > 0 and €sec, €re1 > 0 such that pg + €sec < 552“ and pg + €re1 < brel, it holds for
the standard BB8/ protocol that

1
5 tr[paBE — pu ® pE| < e~ 2"l + 2mne_%m§“. (7.76)

Proof. By using Corollary 7.6 and Proposition 7.10, we get the following bound for
BB84:

1
B tr |[pABE — pU ® PEI
Pr[(k # k%) A (T = 1)

o [(‘ff’ )]
G
+ an\/P [<‘(ZI’2;2>A<|(ZT| Spa>]. (7.77)

Because % > 55% > Pa + €sec, and also because the event k # kP implies that the

IN

= z\®
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error rate on the INFO bits is higher than 0.1 > pq + €rel, We get:

Py [(k;«ékB) A <‘CnT‘ Sm)]
o[ (S 2o (S <)
P [(‘Cnl’ >pa+erel> A <|ch| gpa)]
+ an\/Pr K'C:nl‘ > b +esec> A <ychy < pﬂ (7.78)

All the bits in the protocol are sent in random and independent bases. Therefore,

IN

the random and uniform sampling of the n INFO bits out of the N = 2n bits does not
affect the bases (in the real protocol). This means that we can apply Corollary 2.2 to

this sampling, and we get

C C

Pr [<|I| > pa + 6re1> A <T| < pa>] < e*%mfel, (7.79)
n n
C C

Pr I:(|I| > Pa + 6sec) A <|T| < Pa>] < 6_%7163“. (7.80)
n n 0

Combining Equations (7.77)—(7.80), we get
1 —1ne2 —1pe2
itr |pABE — pU @ pr| < €72l + 2m, e 4" e, (7.81)

In Appendix E of  BBBMRO06] we get the following results on vector families satisfying

the requirements of Theorem 7.11: the bit-rate satisfies

m 1
Rgecret = 771 <1- H2(2pa + 26sec) — Hy (pa + €rel + n) 5 (782)

and the condition on the asymptotic error rate threshold is
1
Hs(2py + 2€sec) + Ha | pa + €rel + - < 1. (7.83)

This gives an asymptotic error rate threshold of 7.56%.

7.3.3 The “Efficient BB84” Protocol

In the “efficient BB84” protocol (suggested by [LCAO05]), the bit string b is chosen
probabilistically, but not uniformly: each qubit is sent in the z basis with probability p
(and in the z basis with probability 1 — p), where 0 < p < % Then, the bit string s is
chosen such that there are n, TEST-Z bits and n, TEST-X bits. In other words, as
in BB84-INFO-z, the strings b and s together define a random partition of the set of
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indexes {1,2,..., N} into three disjoint sets:

e I (INFO bits, where s; = 1) of size n. However, unlike BB84-INFO-z, this set
consists of both z qubits and x qubits; therefore, it can be divided to two disjoint

subsets:

— Iz (INFO-Z bits, where s; =1 and b; = 0); and
— Ix (INFO-X bits, where s; =1 and b; = 1).

e Ty (TEST-Z bits, where s; = 0 and b; = 0) of size n; and
e Tx (TEST-X bits, where s; =0 and b; = 1) of size n,.

Formally, in “efficient BB84”, Alice and Bob agree on parameters n,n,,n, (such
that N = n+n, + n,) and on a parameter 0 < p < %,
Sp={s € FY | (|s| = n)A(|sAb| = n,)} for all b € B (namely, it is required that there
are n INFO bits, n, TEST-Z bits, and n, TEST-X bits). This time, the probability
distribution Pr(b) is not uniform: it holds that Pr(b) = (1 — p)/Pl. pN=IPl because the
probability of each bit to be in the x basis is 1 — p. On the other hand, the probability

distribution Pr(s | b) is uniform.

and we choose B = FY and

Remark. A subtle point is that for some values b € F4 (for example, for b = 00...0),
the set Sy, is empty: no s can be agreed by Alice and Bob for such values of b. In that
case, as assumed in [LCAO05, Section 4.3], the protocol aborts, and other values of b
and s are randomly chosen; this is equivalent to assuming Alice is not allowed to choose

these values of b. Therefore, to be more precise, we must re-define
B={beF) |5, #0}={beF)|(b|>n;)A(b|>n.)} (7.84)

and we must normalize the probabilities by defining Pro(b) £ (1 — p)/P!. pN=IPl (the
original probability of each b), N, = > bep Pro(b) (the sum of all the original probabil-
ities for all the allowed values of b € B), and then the real probability of each b € B is

_ PmNib) _« —p);']p- A (7.85)

Pr(b)

This guarantees that the sum of probabilities of all the allowed values b € B is 1.
Alice and Bob also agree on an error rate threshold, p, (applied both to the TEST-Z
bits and to the TEST-X bits). The testing function 7" is defined as follows:

T(ir @ jr,br,s) =1 & (lit, ®j1,| <1z -pa) A (litg @iTy| < M2 - pa) . (7.86)

Namely, the test passes if and only if the error rate on the TEST-Z bits is at most p,
and the error rate on the TEST-X bits is at most p,.

In this security proof, instead of analyzing all the INFO bits together, we analyze
the INFO-Z and the INFO-X bits separately. We define the following random variables:
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e Cj, and Cy, are the random variables corresponding to the error strings on the
INFO-Z bits and on the INFO-X bits, respectively.

e Np, and Ni, are random variables equal to the numbers of INFO-Z and INFO-X

bits, respectively. (We note that the parameters n,n,,n, are deterministically

chosen by Alice and Bob, while N1, and Ny, are determined by the probabilistic

choice of b. We also note that, necessarily, n = Ny, + Ni,.)

Proposition 7.12. For any e > 0,

C
Pr <‘ I‘>pa+e> (T
L n
[(|Cry|
< P T
=~ r <NIZ > pg + € (
[(1C1]
P X T
+ r <NIX >pa+€ (

Equation (7.87) similarly applies to the hypothetical

D]
D]
.

“inverted-INFO-basis” protocol,

(7.87)

too (namely, it applies even if Pr is replaced by Prinverted- INFO-basis)-

Proof. We observe that if the error rate on all the INFO bits together is larger than
Da + €, then at least one of the error rates (on the INFO-Z bits or on the INFO-X bits)
must be larger than p, + €. (Equivalently, if both error rates on the INFO-Z bits and
on the INFO-X bits are less than p, + €, then the error rate on the INFO bits is less
than p, + €.) Namely,

’CI| ’CIZ‘ ’ Ix‘
— = | —=* V . 7.88
(n > Ppg + € NIZ > pg t+ € NIX > P+ € ( )
In particular, the corresponding probabilities satisfy
C
Pr <‘nl‘>pa—|—6> (T:1)]
< Pr <|CIZ| >pa+6) (T:l)}
Ny,
+ Pr <‘ Il >pa—|—6> (T:l)]. (7.89)
Niy

bl

This result applies both to the real protocol and to the hypothetical “inverted-INFO-basis

protocol. ]
Proposition 7.13. For any e > 0 and 6 > 0,
1Cu| ) }
Pr 2> pyte T=1
[( N, P ( )
S Pr (NIZ S (5)
’CIz| _ _
+ §g?§nPr [(Q >po+e|AN(T=1)| Ny, =t,], (7.90)
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and

|Cr|
+ é?;‘erJWaﬂ AT =1) | Nig =t - (7.91)

Equations (7.90)—(7.91) similarly apply to the hypothetical “inverted-INFO-basis”
protocol, too (namely, they apply even if Pr is replaced by Prinyerted- INFO-basis )-

Proof. First, we prove Equation (7.90):

Pr[(‘](\j[z, >pa+6>/\(T:1)]
- Zpr[(‘ih' >pa—i—e>/\(T:1) ]NIZ:tz] -Pr(Ny, =t,)

z

z

_ ZPYKK?Z' >pa+e>A(T:1)|NIZ:tZ} Pr(Ny, = t.)

C
+ Z Pr[(‘tIZ|>pa+e>/\(T—1)]NIZ—tZ]-Pr(NIZ—tZ)

5<t.<n ?

> Pr(Ny, =t.)

t.<o

+ max Pr|:<‘(iIZ| >pa+€)/\(T:1)|NIZ:tZ:|' Z Pr(NIz:tz)

6<t.<n z

IN

0<t.<n z

C
< Pr(Ny, <0)+ max Pr [(ulz, >pa+6>/\(T:1)|NIZ:tZ]. (7.92)

The proof of Equation (7.91) is similar. Both proofs apply both to the real protocol
and to the “inverted-INFO-basis” protocol. 0

Theorem 7.14. Let us be given dgec > 0, 611 > 0, and, for infinitely many values of
n, a family {v7,..., o8 (.} of linearly independent vectors in F3 such that dsec < %
and such that the parity-check matriz Pc, whose rows are {vf,...,v} }, defines an
error-correcting code that can correct up to n - d.e1 errors on an n-bit string. Then for
any pe > 0 and €gec, €rel > 0 such that pg + €sec < 552“ and pg + €rel < Orel, for any
0<p< %, and for any 0 < n, < % and 0 < ng < (lff)N, it holds for the “efficient
BB84” protocol that

1 _ Nz N 2
Etr’pABE_PU®PE| < 2N 4o 2(n+nz) (%2 =)

+ e zN(O-p)? 4 6—2(niiz)2(7(175)N—"z>63c1
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(1-p)N
vy 2() ()

(7.93)

Proof. By using Corollary 7.6 and Proposition 7.12, we get the following bound:

IN

IN

IA

(5

Cr
+  2mpy | Prinverted-INFO-basis |:<’ Z‘ > Pa + 6sec) A (T = 1):| +

1
St lpABE — pU ® pE]
Pr[(k #k®) A (T =1)]

C 0
+ 2mn \/Prinverted—INFO—basis |:<|I| > ) A\ (T = 1):|
n 2n

[( > pa+ erel) AT = 1)}

+ 2my \/Prinverted—INFO—basis |:<’TL’ > Pa + Esec) A (T = 1):|

=

Pr K’CIZ‘ > pa + 6rel> AT = 1)]

Z

Q

ix| > pa + erel> A(T = 1)]
X

N

Z

Ci
Prinverted-INFO-basis |:<|N X| > Pa + 6sec) A (T = 1):| :
Ix

Proposition 7.13 and the definition of T" give us the following bounds:

IN

C N
Pr[( I|>pa+6rel)/\(T:1)]§Pr<NIZ§p—nz>
M, 2

C C
,, max Pr [(' t?' + Erel) A <% gpa)|NIZ:tZ} ,
%*nzgtzgn

Pr [(](371)] > Pa +€re1> (T= 1)] <Pr (NIX < (1_2]))N nx)

ICr« | [Cril
max Pr [( tix >pa+erel)/\<%zx

%_antxgn

< pa)\NIX:tm] ,

Prinverted—INFO—bams ( N > Pg + 6sec> A (T = 1):|
Iz

pN
Prinverted—INFO—basm <NIZ < — z> —+ N max
2 X —n.<t.<n

+€sec> <‘ nTX| >|NIZ—tz:| )

Cr Pa + esec> A(T = 1)}

Prinverted-INFO-basis [(
Prinverted—INFO—basis |:
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(1-p)N
< Prinverted-INFO-basis (NIX < 9 —Ng | + NmaX
Q=N g, <tp<n

C C
Prinverted—INFO—basiS [(| tiX| Pa € ) A <% Spa> ‘NIX: tx} . (798)

For each one of Equations (7.95)—(7.98), we need to upper-bound two probabilities.
For bounding the first set of probabilities, we use the results of Corollary 2.4:

1—p)N
o <Ib<(2m> < eVOr, (7.99)
N
(b|<p2> < e 3NP?, (7.100)

We notice that |b| = N, + n, and |[b| = Ny, + n.; therefore,

Pr (NIX < (1—21))1\7 - n$> < N0’ (7.101)

Pr <NIZ < % - n> < 2P (7.102)

Prinverted-INFO-basis (NIX < (1_21))N - nx> < e aNO-p)? (7.103)
Prinverted-INFO-basis (NIZ < ]g - nz) < e NP, (7.104)

For bounding the second set of probabilities, given specific values of Ny, = t, and

N1y = tz, we use Corollary 2.2:

In the real protocol, the INFO-Z and TEST-Z bits are sent and measured in the
z basis, while the INFO-X and TEST-X bits are sent and measured in the z basis.
Therefore, the random and uniform sampling of the ¢, INFO-Z bits out of the ¢, + n,
bits sent in the z basis (assuming that the INFO-X and TEST-X bits have already been
chosen) does not affect the bases in the real protocol; similarly, the random and uniform
sampling of the ¢, INFO-X bits out of the t, + n, bits sent in the z basis (assuming
that the INFO-Z and TEST-Z bits have already been chosen) does not affect the bases
in the real protocol. We note that these samplings are uniform, because the probability
Pr(s | b) is uniform for all the allowed values of b and s. This means that we can apply

Corollary 2.2 to both of these samplings, and we get

C C
Pr |:<| tIZ’ >pa+5rel> A <| nTZ| Spa) ’NIZ :tz:|

< 2(tz+"Z> tze““'l (7.105)
C
|:< >pa+6rel> A <|T;JTX Spa) ‘ NIX :t:c:|
< Z(tmz) ta€er (7.106)
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Maximizing over t, and t,, we get:

C C
max Pr |:<|IZ’ > Da +€re1> A <‘TZ’ Spa) ’ NIZ = tz:|

BN <t.<n te z

< () (B (7.107)
%Hfifgtzgn Pr K'%" > Pa + 6re1> A <‘CZX| < pa) | N1y = tx]

o o 2Em) (Y ) (7.108)

In the hypothetical “inverted-INFO-basis” protocol, the INFO-X and TEST-Z bits
are sent and measured in the z basis, while the INFO-Z and TEST-X bits are sent
and measured in the x basis. Therefore, the random and uniform sampling of the ¢,
INFO-X bits out of the ¢, + n, bits sent in the z basis (assuming that the INFO-Z and
TEST-X bits have already been chosen) does not affect the bases in the hypothetical
protocol; similarly, the random and uniform sampling of the ¢, INFO-Z bits out of the
t, + n, bits sent in the x basis (assuming that the INFO-X and TEST-Z bits have
already been chosen) does not affect the bases in the hypothetical protocol. We note
that these samplings are uniform, because the probability Pr(b) depends only on |b|
and is invariant to permutations. This means that we can apply Corollary 2.2 to both

of these samplings, and we get

t

[(1Ct Cr
Prinverted—INFO—basis <| Z’ > Pq + Esec> A <‘ X’ < pa> ‘ NIZ = 75z:|
, L
< 672<tz+z"z> b e (

9

nz

< o) e (7.110)

[ CI CT
Prinverted—INFO—basis <’X‘ > Do + 6880) A <‘Z’ < pa> ‘ NIX = tz:|
7

Maximizing over ¢, and t,, we get:

CI CT
max Prinverted-INFO-basis |:< Z| > Pa + 6sec) A <|X| < pa) ‘ NIZ = t2:|

% —n:<t:<n tz

nge 2 N
< ) (Bn)de (7.111)

CI CT
max Prinverted—INFO—basis |:<’ X‘ > Pq + Esec> A <|Z < pa> ‘ NIX = tx:|

T A ta
Nz 2 (1_ )N_
< o 2(GEE) (B o) de (7.112)
To sum up, we get the following bound:
1
5 tlpase — pu @ pE|
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n pN _ 2
ei%NPQ + 6_2(n+flz) ( 2 nz)erel

IN

+ e—%N(l—pV + e—2<n$ﬁz>2(7(175)N —"z)ffcl

e~ 3N(-p)? | efz(nifl)z(%’"z)egei (7.113)
O

Similarly to the standard BB84, we get the following results on vector families

satisfying the requirements of Theorem 7.14: the bit-rate satisfies
a Mn 1
Rgecret = 7 <1- H2(2pa + 2€sec) — Hy | pq + €re1 + ﬁ ) (7-114>
and the condition on the asymptotic error rate threshold is
1
H2(2pa + 2€sec) + H> <pa + €rel + n) < 1. (7115)
This gives an asymptotic error rate threshold of 7.56%.

7.3.4 The “Modified Efficient BB84” Protocol

A relatively minor property of the definition of the “efficient BB84” protocol in [LCAO05]
(and in Subsection 7.3.3) makes both the security bound and the security proof pretty
complicated. In this subsection, we describe a modified protocol that has an easier
security proof. The only modification in this protocol is setting the number of INFO-Z
and INFO-X bits to be fixed, rather than letting them vary probabilistically. This
change simplifies the description of the protocol, because it is no longer needed to set the
probability p and to treat illegal choices of b, s (see Remark 1); and it also simplifies the
security proof, because it is no longer needed to probabilistically analyze the numbers
of INFO-Z and INFO-X bits (as done in Subsection 7.3.3).

In the “modified efficient BB84” protocol, the strings b and s together define a

random partition of the set of indexes {1,2,..., N} into four disjoint sets:
e I (INFO-Z bits, where s; = 1 and b; = 0) of size t;
e Ix (INFO-X bits, where s; =1 and b; = 1) of size t,;
e Ty (TEST-Z bits, where s; = 0 and b; = 0) of size n; and
e Tx (TEST-X bits, where s; =0 and b; = 1) of size n,.

Formally, in “modified efficient BB84”, Alice and Bob agree on parameters t,, t,, n,, n,
(such that N = n+n,+n, andn = t,+t,), and we choose B = {b € FY | |b| = t,+n,}
and Sp, = {s € FY | (|s| =n) A (]S Ab| =n,)} for all b € B (namely, it is required that
there are t, INFO-Z bits, t, INFO-X bits, n, TEST-Z bits, and n, TEST-X bits). The
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probability distributions Pr(b) and Pr(s | b) are uniform (because |b|, which is the only
parameter that affects Pr(b) in Subsection 7.3.3, is fixed in the modified protocol).

Alice and Bob also agree on an error rate threshold, p, (applied both to the TEST-Z
bits and to the TEST-X bits). The testing function T is defined as follows:

T(IT @jTabTaS) =1 <& (|iTZ @jTZ‘ § n; 'pa) A (|iTX @jTX| S Ny 'pa)- (7116)

Namely, the test passes if and only if the error rate on the TEST-Z bits is at most p,
and the error rate on the TEST-X bits is at most p,.

Proposition 7.15. For any e > 0,

I%Kfy>m+§A@:U]

< Pr <|(§IZ| >pa+e>/\(T:1)}

z

+ Pr ('Ct;x' > pa + e> A(T = 1)] . (7.117)

Equation (7.117) similarly applies to the hypothetical “inverted-INFO-basis” protocol,
too (namely, it applies even if Pr is replaced by Prinverted INFO-basis)-

Proof. The same proof as Proposition 7.12. O

Theorem 7.16. Let us be given dsec > 0, 6yl > 0, and, for infinitely many values of
n, a family {v7,...,v0 (.} of linearly independent vectors in F3 such that dsec < %
}, defines an

error-correcting code that can correct up to n - 4.1 errors on an n-bit string. Then for

and such that the parity-check matriz Pc, whose rows are {vf,...,v]

any pg > 0 and €gec, €ral > 0 such that pg + €sec < 552“ and pq + €rel < Orel, and for any
ty,te, Ny, ng > 0 such that n = t, +t,, it holds for the “modified efficient BB84” protocol
that

1
5t |PABE — pU @ pE|

Lo mx Ve Lo me )2
< e tz+nz Z5r01+6 tetng ) ‘el

ng Nz

+ an\/e_Q(tz+"W)2tzegec + 6_2<tx+"z>2txegec. (7118)

Proof. By using Corollary 7.6 and Proposition 7.15, we get the following bound:

1
o tr lpABE — pU ® pE|
< Pr[(k#k°) A (T =1)]

C; 0
+ 2mn\/Prinverted-INFO-basis |:<|‘ > ) A (T = 1):|
n 2n
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Cr
+ 2mn \/Prinvcrtcd—INFO—basis |:<|n| > Pa + 6sec> A (T = 1):|
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.-U

-
1

Cr
+ 2mn\/Prinverted—INFO—basis |:<| ; Z| > Pg + 6sec) A (T = 1):| +
z

Ci
Prinverted—INFO—basis |:( P X| > pg + €Sec> VAN (T = 1):|
x

C C
Pr |:<|IZ’ > Pa +6rel> A <|TZ| Spa>:|
t, Ny
C C
+ Pr [(';X‘ >pa+erel> A ('TLTX‘ gpa)]

Ci Cr
+ 2mn\/Prinverted—INFO—basis |:<| ; Z| > Pg + 6sec) A <|nX| < pa>:| +
z x

C C
Prinverted—INFO—basis |:(IX| > Ppa + Esec> A (|TZ| < pa):| . (7119)

ty z

IN

For bounding these probabilities, we use Corollary 2.2:

In the real protocol, the INFO-Z and TEST-Z bits are sent and measured in the
z basis, while the INFO-X and TEST-X bits are sent and measured in the x basis.
Therefore, the random and uniform sampling of the ¢, INFO-Z bits out of the t, + n,
bits sent in the z basis (assuming that the INFO-X and TEST-X bits have already been
chosen) does not affect the bases in the real protocol; similarly, the random and uniform
sampling of the ¢, INFO-X bits out of the t, +n, bits sent in the x basis (assuming that
the INFO-Z and TEST-Z bits have already been chosen) does not affect the bases in the
real protocol. This means that we can apply Corollary 2.2 to both of these samplings,

and we get
[/ ]C C
e (0 ) (128 2,0
L t, Ny
2
< e_Q(tzfnz) tzefel, (7.120)
[/ ]C C
Pr <| IX| >pa+€rel) A (‘TX| Spa>:|
L ty Ny
2
< o a) e, (7.121)

In the hypothetical “inverted-INFO-basis” protocol, the INFO-X and TEST-Z bits
are sent and measured in the z basis, while the INFO-Z and TEST-X bits are sent and
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measured in the x basis. Therefore, the random and uniform sampling of the ¢, INFO-X
bits out of the t, + n, bits sent in the z basis (assuming that the INFO-Z and TEST-X
bits have already been chosen) does not affect the bases in the hypothetical protocol;
similarly, the random and uniform sampling of the ¢, INFO-Z bits out of the t, + n,
bits sent in the z basis (assuming that the INFO-X and TEST-Z bits have already been
chosen) does not affect the bases in the hypothetical protocol. This means that we can

apply Corollary 2.2 to both of these samplings, and we get

- CI CT -
Prinverted—INFO—basis <‘tZ’ > P+ 6sec) A <‘X’ < pa)
L z Ny i
2
— ng 2
S e 2<tz+nz> tzesec’ (7122)
- CI CT -
Prinverted-INFO-basis <|tX’ > P+ 6sec) A <‘ Z’ S pa>
L z Nz i
2
— nz 2
S e 2<t1‘+nz) tmesec. (7.123)

To sum up, we get the following bound:

1
3 tr |pABE — pU @ pE|

nz nx

2 2 2 2
< 6_2(t2+nz) tzErel +6_2<tz+nz) tzerel

ng nz

+ 2m, \/ o) e + o2 ) e (7.124)
0

Similarly to the standard BB84 and to the “efficient BB84” protocols, we get the
following results on vector families satisfying the requirements of Theorem 7.16: the

bit-rate satisfies
a Mn 1
Rgecret = 7 <1l- H2(2pa + 25sec) — Hs | pa + €ral + E s (7125)
and the condition on the asymptotic error rate threshold is

1
Hy(2pa + 2€sec) + Ha (pa + €rel + n) < 1. (7.126)

This gives an asymptotic error rate threshold of 7.56%.
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Chapter 8

From Practice to Theory: the
“Bright Illumination” Attack on
Quantum Key Distribution

Systems

In this chapter, we explain how the practical “Bright Illumination” attack on QKD
systems can be described as a theoretical “Reversed-Space” attack.

This chapter is based on a paper published in the 9th International Conference on
the Theory and Practice of Natural Computing (TPNC) in 2020 by Rotem Liss and Tal
Mor [LM20].

8.1 Introduction

In the area of quantum information processing, theory usually precedes experiment.
For example, the BB84 protocol was suggested in 1984 [BB84], five years before it
was implemented [BBBSS92], and it still cannot be implemented in a perfectly se-
cure way even today [LCT14, SK14]. The “Photon-Number Splitting” attack was
suggested in 2000 [BLMS00], but it is not implementable today. Quantum comput-
ing was suggested in the 1980s [Deu85, Fey82, Ben80], but no useful and universal
quantum computer (with a large number of clean qubits) has been implemented un-
til today [Prel8]. The same applies to Shor’s factorization algorithm [Sho94, Sho99],
quantum teleportation [BBCJPW93] (at least to some extent; see also [PHBT14]), and
many other examples.

In contrast to the above examples, the “Bright Illumination” attack against practical
QKD systems was presented and fully implemented in 2010 [LWWESM10], prior to
any theoretical prediction of the possibility of such an attack.

In this chapter, we ask the question: could the “Bright Illumination” attack have
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been theoretically predicted? How can the “Bright Illumination” attack be theoretically
modeled (even approximately) by using the Fock space notations? We show that the
“Bright Illumination” attack can be modeled as a “Reversed-Space” attack [GM12] (or,
more generally, as a “Quantum Space” attack [GMO07, Gel08, GM12]) and that this

attack and similar attacks could and should have been suggested by theoreticians.

8.2 Imperfections in Experimental Implementation of QKD

In this chapter, we usually consider the polarization-based implementations of BB84
discussed in Subsection 2.5.2, in which |0) = <), |1) = []), |[+) = |, and |—) = |[N)).
For describing the practical system, we use the Fock space notations described in
Subsection 2.5.1, in which the |mj,mg) state represents m; indistinguishable photons
in the |1) mode and mg indistinguishable photons in the |0) mode.

Two important examples of imperfections (see [GM16]) are highly relevant to various
“Reversed-Space” attacks. As we show in this chapter, these two imperfections must be

combined for understanding the “Bright Illumination” attack.

Imperfection 1: Our realistic assumption, which is true for standard detectors in
QKD implementations, is that Bob’s detectors cannot count the number of photons in a
pulse. Thus, they cannot distinguish all Fock states |m) from one another, but can only
distinguish the Fock state |0) (a lack of photons) from the Fock states {|m) : m > 1}.
Namely, standard detectors can only decide whether the mode is empty (m = 0) or
has at least one photon (m > 0). In contrast, we assume that Eve can (in principle)
do anything allowed by the laws of quantum physics; in particular, Eve may have such
“photon counters”.

In particular, let us assume that there are two pulses, each of them consisting of a
single mode. Bob cannot know whether a pulse contains one photon or two photons;
therefore, he cannot distinguish between [1)|0) and |2)|0) (and, similarly, he cannot
distinguish between |0)[1) and |0)|2)). For example, assume that Alice sends the |1)|0)
state (a qubit) to Bob, and Eve replaces Alice’s state by [2)|0) and sends it to Bob
instead (or, similarly, assume that Eve replaces |0)|1) by |0)|2)). In this case, Bob cannot
notice the change, and no error can occur; still, Bob got a state he had not expected to

get. It may be possible for Eve to take advantage of this fact in a fully-designed attack.

Imperfection 2: Our realistic assumption is that Bob cannot know exactly when the

photon he measured arrived. For example (in a polarization-based implementation):
o Alice’s ideal qubit arrives at time ¢ (states denoted |0, 1):|0,0)¢4s , |1,0)£0,0)¢4s)-
e Eve’s photon may arrive at time ¢+6 (states denoted |0, 0)¢]0, 1)¢1s , [0,0)¢]1,0)¢4s)-

Again, Eve may take advantage of this fact in a fully-designed attack.
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Similar imperfections can be found if Bob cannot know exactly what the wavelength

of the photon is, or where the photon arrives.

The conceptual difference between the two imperfections is in whether Bob

can (ideally) avoid measuring the extra states sent by Eve, or not:

e In Imperfection 1, Eve may send more than one photon, and Bob must measure

the state (while he cannot count the number of photons using current technology).

e In Imperfection 2, Eve sends states in two separate subsystems. Bob can, in
principle, ignore the “wrong” subsystem in case he knows for sure it has not been

sent by Alice.

8.3 The “Bright Illumination” Attack

The “Bright Illumination” blinding attack [LWWESM10] works against QKD systems
that use Avalanche Photodiodes (APDs) as Bob’s detectors. As an example, we describe
below the implementation of this attack against a system implementing the BB84
protocol in a polarization-based scheme, but it is important to note that the attack can
be adapted to most QKD protocols and implementations that use APDs [LWWESM10].

The APDs can be operated in two “modes of operation”: the “linear mode” that
detects only a light beam above a specific power threshold, and “Geiger mode” that
detects even a single photon (but cannot count the number of photons). In this attack,
the adversary Eve sends a continuous strong light beam towards Bob’s detectors, causing
them to operate only in the linear mode (thus “blinding” the detectors).

After Bob’s detectors have been blinded (and in parallel to sending the continuous
strong beam, making sure they are kept blind), Eve performs a “measure-resend” attack:
she detects the qubit (single photon) sent by Alice, measures it in one of the two bases
(exactly as Bob would do), and sends to Bob a strong light beam depending on the
state she measured, a little above the power threshold of the detectors. For example,
if Eve measures the state |1,0), she sends to Bob the state |m,0) for m > 1. Now, if
Bob chooses the same basis as Eve, he will measure the same result as Eve; and if Bob
chooses a different basis, he will measure nothing, because the strong light beam will
get split between the two detectors. This means that Bob will always either measure
the same result as Eve or lose the bit.

In the end, Bob and Eve have exactly the same information, so Eve can copy Bob’s
classical post-processing and get the same final key as Alice and Bob do. Moreover,
Eve’s attack causes no detectable disturbance, because Bob does not know that his
detectors have operated in the wrong mode of operation; the only effect is a loss rate
of 50% (that is not problematic: the loss rate for the single photons sent by Alice is

usually much higher, so Eve can cause Bob to get the same loss rate he expects to get).
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This attack was both developed and experimentally demonstrated against commercial
QKD systems by [LWWESM10]. See [LWWESM10] for more details and for diagrams.

8.4 “Reversed-Space” Attacks

The “Reversed-Space” methodology, described in [Gel08, GM16, GM12], is a theo-
retical framework of attacks exploiting the imperfections of Bob. This methodology
is a special case (easier to analyze) of the more general methodology of “Quantum
Space” attacks [GMO07, Gel08], that exploits the imperfections of both Alice and Bob;
the “Reversed-Space” methodology assumes Alice to be ideal and only exploits Bob’s
imperfections [Gel08, GM12, BGM14, GM16]. (Another special case of a “Quantum
Space” attack is the “Photon-Number Splitting” attack described in Subsection 2.5.3.)

In the ideal QKD protocol, Bob expects to get from Alice a state in the Hilbert
space H™; however, in the “Reversed-Space” attack, Bob gets from Eve an unexpected
state, residing in a larger Hilbert space called the “space of the protocol” and denoted
by HY. In principle, Eve could have used a huge space H’ such that H* C HF C H':
the huge Hilbert space H’ consists of all the quantum states that Eve can possibly send
to Bob, but it is too large, and most of it is irrelevant.

Because “Reversed-Space” attacks assume a “perfect Alice” (sending prefect qubits),
it is usually easy to find the relevant subspace HY, as we demonstrate by three examples
below; HF is only enlarged (relative to the ideal space H*) by Bob’s imperfections.
Therefore, H' is the space that includes all the states that may be useful for Eve to
send to Bob. The space HF is defined by taking all the possible measurement results of
Bob and reversing them in time; more precisely, it is the span of all the states in H*
and all the states that Eve can send to Bob so that he gets the measurement results she
desires.

Whether Bob is aware of it or not, his experimental setting treats not only the states
in HA, but all the possible inputs in the “space of the protocol” HF. Bob then classifies
them into three classes: (1) valid states from Alice, (2) losses, and (3) invalid states.
Valid states are always treated in conventional security analysis: a random subset is
compared with Alice for estimating the error rate, and then the final key is obtained
using the error correction and privacy amplification processes. Losses are expected, and
they are not counted as noise. Invalid states are usually counted as errors (noise), but
they do not appear in ideal analyses of ideal protocols. We note that loss rate and error
rate are computed separately: the error rate must be small (e.g., around 10%) for the
protocol not to be aborted by Alice and Bob, while the loss rate can be much higher
(even higher than 99%). Any “Reversed-Space” attack takes advantage of the possibility
that Bob treats some states in H' in the wrong way, because he does not expect to get
these states.

Eve’s attack is called “Reversed-Space” because Eve can devise her attack by looking

at Bob’s possible measurement results: Eve finds a measurement result she wants to
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be obtained by Bob (because he interprets it in a way desired by her) and reverses the
measurement result in time for finding the state in 4" she should send to Bob. In
particular, if Bob applies the unitary operation Up on his state prior to his measurement,
Eve should apply the inverted operation Uy - L{f; to each state corresponding to each
possible measurement outcome of Bob.

We present three examples of “Reversed-Space” attacks. For simplicity, we only con-
sider BB84 implemented in a polarization-based scheme (as described in Subsection 2.5.2
and Section 8.2), but the attacks may be generalized to other implementations, too. We
emphasize that all three examples have been chosen to satisfy two conditions, also satis-
fied by the “Bright Illumination” attack: (a) Eve performs a “measure-resend” attack
in a basis she chooses randomly, and (b) it is possible for Eve to get full information

without inducing noise.

Example 1 (a special case of the “Trojan Pony” attack [GLLPO04]): This
example exploits Imperfection 1 described in Section 8.2, and it assumes Bob uses an
“active” basis choice (see Subsection 2.5.2).

In this attack, Eve performs a “measure-resend” attack—mnamely, she measures each
qubit state sent from Alice to Bob in a random basis, and resends “it” towards Bob.
However, instead of resending it as a single photon, she resends a huge number of
photons towards Bob: she sends many identical photons, all with the same polarization
as the state she measured (]o), |1), |[+), or |—)). If Bob chooses the same basis as Eve,
he will get the same result as her, because Imperfection 1 causes his system to treat
the incoming states |0, m) and |m,0) (for any m > 1) as if they were |0,1) and [1,0),
respectively; but if he chooses a different basis from Eve, both of his detectors will
(almost surely) click. If Bob decides to treat this invalid event (a two-detector click) as
an “error”, the error rate will be around 50%, so Alice and Bob will abort the protocol;
but if he naively decides to treat this event as a “loss”, Eve can get full information
without inducing errors.

Alice sends an ideal qubit (a single photon), while Eve may send any number of
photons. Therefore, using the Fock space notations, H* = Hs £ Span{[0,1), |1,0)} and
HP = Span{|my, mg) : m1, mo > 0}.

Example 2 (a special case of the “Faked States” attack [MHO05, MASO06,
Gel08]): This attack exploits Imperfection 2 described in Section 8.2. We assume
that Bob has four detectors (namely, that he uses the “passive” basis choice variant
of the polarization-based encoding: see Subsection 2.5.2), and that his detectors have
different (but overlapping) time gates during which they are sensitive: given the three
different times tg < t;/5 < t1, the detectors for the computational basis are sensitive
only to pulses sent at tg or t;/5 (or in between), and the detectors for the Hadamard
basis are sensitive only to pulses sent at t1/5 or ¢ (or in between). Alice normally sends

her pulses at t; /o (when both detectors are sensitive), but Eve may send her pulses at
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to, t1/2, or 1.

Eve performs a “measure-resend” attack by measuring Alice’s state in a random
basis, and resending it towards Bob as follows: if Eve measures in the computational
basis, she resends the state at time tg; and if she measures in the Hadamard basis, she
resends the state at time t;. Therefore, Bob gets the same result as Eve if he measures
in the same basis as hers, but he gets a loss otherwise (because Bob’s detectors for the
other basis are not sensitive at that timing). This means that Eve gets full information

without inducing any error.

Using the same notations as in Imperfection 2, the state [ma1, mo)io|n1, no)t, 01, 00)¢,
consists of the Fock states |[m1,mo) sent at time tg, [n1,n9) sent at time ¢, /5, and |01, 0p)
sent at time ¢;. Alice sends an ideal qubit (a single photon at time ¢ 5), while Eve may

send a single photon at any of the times to, ¢/, or 1, or a superposition.

Therefore, H* = Hy £ Span{|0,0)¢,[0, 1)s, , t1/210,0)¢,} and
HY = Span“o’1>t0‘070>t1/2‘070>t1 ) ’170>t0’070>t1/2|070>t1 ) ‘070>t0‘07 1> ‘070>t1 )
’07 0>t0’17 0>t1/2|07 0>t1 ) ‘07 O>t0‘07 0>t1/2 |07 1>t1 ) |O’ O>t0‘0’ O>t1/2 ’17 0>t1}'

|07 0>t1 ) |07 0>to|1a 0>

t1/2

Example 3 (the “Fixed Apparatus” attack [BGM14]) can be applied by Eve
if Bob uses a “passive” basis choice (see Subsection 2.5.2). In this attack, Eve sends to
Bob an unexpected state, and this state “forces” Bob to obtain the basis Eve wants.
This attack makes it possible for Eve to force Bob choose the same basis as her (and,
therefore, get the same outcome as her), thus stealing the whole key without inducing
any errors or losses. The attack is only possible if Eve has a one-time access to Bob’s
laboratory, because it requires Eve to first compromise Bob’s device (otherwise, she

cannot send him that unexpected state).

Assume that Bob uses a polarization-independent beam splitter that splits the
incoming beam into two different output arms (as described in Subsection 2.5.2). This
beam splitter has two input arms: a regular arm, through which the standard incoming
beam comes, and a blocked arm, where the incoming state is always assumed to be
the zero-photon beam |0,0) (the vacuum state of two polarizations). If Eve can drill
a small hole in Bob’s device, exactly where the blocked arm gets its input from, then
she can send a beam to the blocked arm and not only to the standard arm. It is
proved [BGM14] that Eve can then cause the beam splitter to choose an output arm to
her desire, instead of choosing a “random” arm. The state |my, mg).|n1,no)p consists of
the Fock state |mq,mg) sent through the regular arm of the beam splitter and the Fock
state |n1,ng) sent through the blocked arm. Alice sends an ideal qubit (a single photon
through the regular arm), while Eve may send a single photon through any of the two
arms or a superposition. Therefore, H* = Hy £ Span{|0,1),./0,0), , |1,0),.]0,0);} and
H" = Span{|0,1),(0,0)y . [1,0):]0,0)y , [0,0)-[0,1)p , [0,0)r[1,0)s}.
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8.5 Quantum Side-Channel Attacks

Shamir’s “Quantum Side-Channel Attack” on Polarization-Based QKD: The
following attack was proposed by Adi Shamir in a meeting with Tal Mor (one of the

authors of [LM20], on which this chapter is based) around 1996-1999 [Shal, and it may

have never been published (but see similar attacks below). Shamir’s attack only applies

to QKD implementations that use “active” basis choice (as opposed to the “passive”
basis choice, which leads to the “Fixed Apparatus” attack described in Example 3 of

Section 8.4). The attack is related to Imperfection 2 described in Section 8.2: Bob’s

apparatus must be fully or partially ready to receive Alice’s photon before it arrives.

For example, if the photon is supposed to arrive at time ¢, then Bob’s setup is already

partially ready at time ¢ — §; in particular, Bob decides the basis choice and configures

the polarizing beam splitter accordingly before time ¢ — §. The attack also assumes that

the detectors themselves are still inactive (blocked) at time ¢ — §, and are activated just

before time t. Therefore, at time t — §, the polarizing beam splitter is already configured

to match the required basis (the computational basis or the Hadamard basis), while the

detectors are still blocked.

Eve’s attack is sending a strong pulse at time ¢ — §, that hits the polarizing beam
splitter (but not the blocked detectors) and gets reflected back to Eve, containing full
or partial information on the direction of the polarizing beam splitter—and, thus, on
the basis choice. Assuming Eve gets the information on Bob’s basis choice before she
receives Alice’s pulse, Eve could employ the following full attack: Eve measures the
photon coming from Alice in the same basis chosen by Bob, learns the qubit’s value,
and resends to Bob the resulting state (in the same basis), obtaining full information
while inducing no errors and no losses.

One can suggest two ways to possibly prevent the attack: (a) opening the detection
window (activating the detectors) shortly after the polarizing beam splitter is configured
according to the basis choice (if the time difference is sufficiently short, Eve cannot find
Bob’s basis choice on time for employing the full attack); or (b) blocking access to the
polarizing beam splitter until the detectors are activated (although this solution may
be hard to implement).

As we explain in Section 8.6, the “Bright Illumination” attack could have been
predicted by adding Imperfection 1 described in Section 8.2 (namely, detection of
multi-photon pulses) to the above idea of a strong pulse sent at time ¢ — § towards Bob

(i.e., Imperfection 2, as already discussed here) and using the Fock space notations.

“Conventional Optical Eavesdropping” and “Quantum Side-Channel At-
tacks”: Other attacks, similar to Shamir’s attack, have been independently developed—
for example, the “Large Pulse” attack [VMHO1], which attacks both Alice’s and Bob’s
set-ups. As written in [VMHO1]: “This [large pulse] attack is one of the possible methods

of conventional optical eavesdropping, a new strategy of eavesdropping on quantum
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cryptosystems, which eliminates the need of immediate interaction with transmitted
quantum states. It allows the eavesdropper to avoid inducing transmission errors that
disclose her presence to the legal users.”

Instead of restricting ourselves to “conventional optical eavesdropping on quantum
cryptosystems”, we make use of a different sentence from [VMHO1]—“eavesdropping
on quantum cryptosystems which eliminates the need of immediate interaction with

transmitted quantum states”—and we define “quantum side-channel attacks” as follows:

A quantum side-channel attack is any eavesdropping strategy which eliminates the

need of any immediate interaction with the transmitted quantum states.

According to the above definition, both Shamir’s attack and the “Large Pulse”
attack are “quantum side-channel attacks”, because they attack the devices and not
the quantum states themselves. On the other hand, the “Reversed-Space” attacks and
the “Quantum Space” attacks (see Section 8.4) can be fully described using a proper
description of the QKD protocol, which uses the Fock space notations; therefore, they
should not be considered as “quantum side-channel attacks”. In fact, we can say they are
complementary to “quantum side-channel attacks”, and we name them “state-channel
attacks”.

In a classical communication world, the notion of “side-channel attacks” makes
use of any information leaked by the physical execution of the algorithm (see, for
example, [KBO7]). Accordingly, other researchers (e.g., [SBPCDLP09]) have chosen to
adopt a wide definition of “quantum side-channels”, which also includes the “Photon-
Number Splitting” attack and many other practical attacks. However, we prefer to take

a narrower view of “quantum side-channel attacks”, as explained above.

8.6 From Practice to Theory: The Possibility of Predict-
ing the “Bright Illumination” Attack

The “Bright Illumination” attack could have been predicted, because it simply combines
Imperfections 1 and 2 that were described in Section 8.2: namely, detecting many
photons at time ¢ — §, while the single “information” photon should have arrived at
time t. In some sense, it seems to merge a “Reversed-Space” attack and a “quantum
side-channel attack”, because it attacks both the transmitted quantum states and the
detectors themselves. However, because Bob’s detectors are fully exposed to Eve at
both times ¢ and ¢ — ¢ (unlike the “Large Pulse” attack [VMHO1], where the detectors
are not exposed at time ¢t — §), we see the “Bright Illumination” attack as a special
(and fascinating) case of “Reversed-Space” attack, and not as a “quantum side-channel
attack”.

The “Bright Illumination” attack is made possible by a lack of information on the

“space of the protocol” HF: Eve sends many photons (as in Imperfection 1) at time ¢ —§
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(as in Imperfection 2), and Bob does not notice her disruption because he cannot count

the number of photons and cannot block the detectors at time ¢ — 9.

For preventing all the possible attacks and proving full security, it must be known
how Bob’s detectors treat any number m of photons sent to him by Eve, and it must
also be known how Bob’s detectors treat multiple pulses. In particular, a detector
definitely cannot operate properly in the hypothetical scenario where an infinite number
of photons (with infinite energy) arrives as its input. A potentially secure system must
have an estimated threshold N, such that if m < N photons arrive, they are correctly
measured by the detectors (treated as one photon), and if m 2 N photons arrive, the
measurement result is clearly invalid and is known to Bob (for example, smoke comes
out of the detectors, or the detectors are burned). N is estimated, so there is a small

unknown range near it.

Prior to the “Bright Illumination” attack, it seems that no systematic effort has been
invested in finding or approximating the threshold N and characterizing the detectors’
behavior on all possible inputs (any number of photons m). A proper “Reversed-Space”
analysis would have suggested that experimentalists must check what N is and fully
analyze the behavior of Bob’s detectors on each quantum state; such an analysis would

then have found the “space of the protocol” HF which is available for Eve’s attack.

A careful “Reversed-Space” analysis—if it had been carried out—would then have
found that instead of one estimated threshold N (with some small unknown range
around it), there are two estimated thresholds Nj, No, such that Ny < Na, with a
some small unknown range around each of them, and a large difference between them.
Therefore, there are three main ranges of the numbers of photons m: (a) for m < Ny
photons, Bob’s detectors work well (and click if at least one photon arrives); (b) for
N1 < m < Ny photons, it would have become known that some strange phenomena
happen—for example, that Bob’s detectors switch to the “linear mode”; and (c) for

m 2 Ny photons, Bob’s detectors malfunction (e.g., the detectors are burned).

Thus, surprisingly, even if the experimentalist had not known about the two modes
of operation (“Geiger mode” and the “linear mode”) existing for each detector, he or she
could still have discovered the two different thresholds Ny, No and then investigated the
detectors’ behavior in the middle range N1 < m < Ns. This would have allowed him or
her to discover the “linear mode” and realize that there is also a need to check multiple
pulses for finding the correct “space of the protocol” and for analyzing the security
against “Reversed-Space” attacks. Namely, the “Reversed-Space” approach makes it
possible to discover attacks even if the detectors are treated as a black bor whose
internal behavior is unknown. By theoretically trying to prove security against any
theoretical “Reversed-Space” attack, it would have been possible to find the practical
“Bright Illumination” attack; it would have even been possible to study the operation of a
“black-box” detector and discover, for example, that it has a “linear mode” of operation

(even if this mode of operation had not been already known for realistic detectors).
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8.7 Conclusion

We have seen a rare example (in quantum information processing) where experiment
preceded theory. We can see now that this experimental attack could have been
theoretically predicted: for a system to be secure, Bob must be sure that Eve cannot
attack by sending an unexpected number of photons, and he must know what happens
to his detectors for any number of photons. Otherwise—Eve can attack; and we could
have known that this may be possible.

We have also defined the general notion of “quantum side-channel attacks”: we
have distinguished “state-channel attacks” (including “Reversed-Space” and “Quantum
Space” attacks) that interact with the transmitted (prepared or measured) quantum
states, from “quantum side-channel attacks” that do not interact with the transmitted

quantum states.
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Chapter 9
Summary

In this research, we have answered several important questions about security of QKD:

1. In Chapters 3, 4, and 5, we have discussed practical security of semiquantum
key distribution (SQKD) protocols. Unlike previous SQKD protocols, our newly
suggested “Mirror protocol” is experimentally feasible, and we have proved it

secure against “uniform collective” attacks.

Notice that these chapters analyze security of a two-way protocol (see Subsec-
tion 2.2.2) which is harder to analyze than one-way protocols; thus, as explained

in Section 5.1, its security analysis is limited to uniform collective attacks.

2. In Chapters 6 and 7, we have improved and generalized the security approach
of [BBBMRO6] to prove fully composable security of the BB84 protocol and many

of its variants against the most general attacks.

3. In Chapter 8, we have shown how a practical attack (the “Bright Illumination”

attack) can be theoretically modeled as a “Reversed-Space” attack.

All three directions share the motivation of bridging the gap between theory and
practice, and all of them are aimed (in different ways) to answer one ultimate question:
can we experimentally implement a QKD protocol with full and unconditional security
against any possible attack (including all attacks that use practical imperfections)? This
general question is one of the most important open problems in the field of QKD.

More specific open problems include: analyzing experimental implementations of
the Mirror protocol; proving unconditional security of SQKD protocols against the most
general attacks (and not only collective or “uniform collective” attacks) and against
all multi-photon attacks; generalizing [BBBMRO06]’s security approach to various QKD
protocols that are not similar to BB84; and systematically mapping practical attacks to
theoretical models.

Much work remains to be done on the general problem of obtaining full security proofs
for realistic QKD systems, but we believe our research has improved the understanding

of practical security in a variety of important sub-fields of QKD.
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